

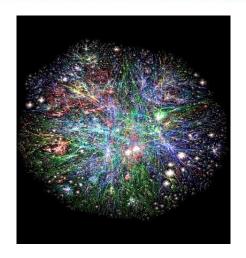
Minería de grafos

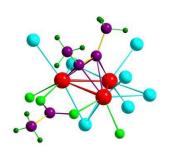
© Fernando Berzal, berzal@acm.org

Minería de grafos

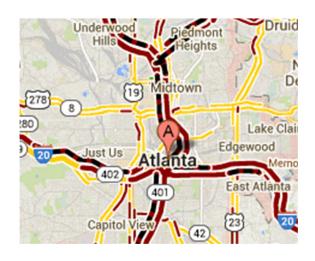
- Detección de patrones en grafos
 - Isomorfismo de (sub)grafos
 - Subgrafos frecuentes
 - Motif discovery
- Agrupamiento en grafos
 - El problema de la detección de comunidades
 - Métodos de detección de comunidades
 - Detección de comunidades con solapamiento
- Clasificación en grafos
 - El problema de la predicción de enlaces
 - Técnicas de predicción de enlaces

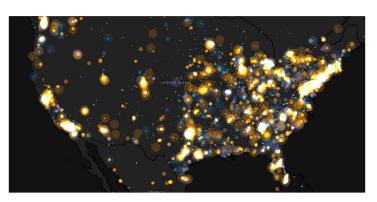
Datos





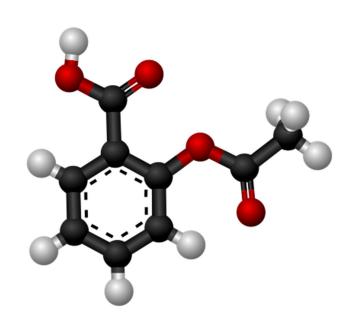
Datos

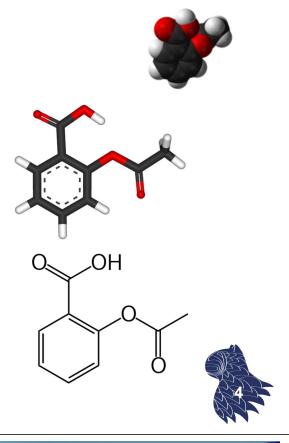




Patrones en grafos

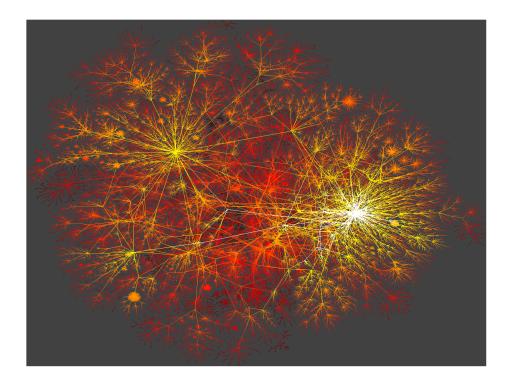
El compuesto químico de la aspirina





Patrones en grafos

Internet

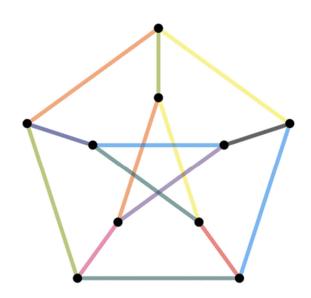


Patrones en grafos

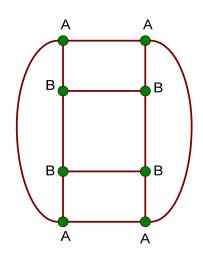
¿Qué interés tiene encontrar patrones en grafos?

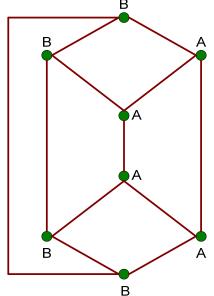
- Caracterizar conjuntos de grafos.
- Crear modelos de clasificación de grafos.
- Diseñar métodos de agrupamiento en grafos.
- Construir índices en bases de datos de grafos.

Isomorfismo de (sub)grafos



Comparar grafos implica medir la similitud entre ellos: ver hasta qué punto son isomorfos.





Dos grafos son isomorfos si son topológicamente equivalentes

Isomorfismo de (sub)grafos

La detección de isomorfismo entre grafos es un problema NP peculiar.

- No se sabe si está en P.
- No se sabe si es NP-completo.
- ¿Clase de complejidad intermedia [GI]?

NP completo Clique

Isomorfismo de grafos

Factorización

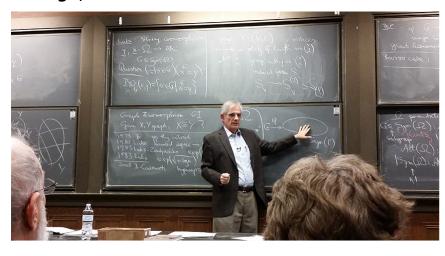
P

NOTA: Su generalización, el isomorfismo de subgrafos, sí es un problema NP-completo (reducción: clique).

Landmark Algorithm Breaks 30-Year Impasse

Chicago, 10 de noviembre de 2015 → STOC'2016

NP completo
Clique



Isomorfismo de grafos

ctorización

P

Laszlo Babái: Graph isomorphism in quasipolynomial time,

O (exp (polylog (n))) = O(exp ($log^k(n)$)

http://people.cs.uchicago.edu/~laci/quasipoly.html

Isomorfismo de (sub)grafos

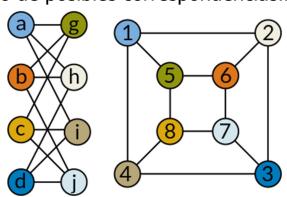
Landmark Algorithm Breaks 30-Year Impasse

Chicago, 10 de noviembre de 2015

NP completo Clique

Algoritmo divide y vencerás:

Coloreado de posibles correspondencias...



Isomorfismo de grafos

ctorización

P

O (exp (polylog (n)) = O (exp (log n)^k))

http://people.cs.uchicago.edu/~laci/quasipoly.html

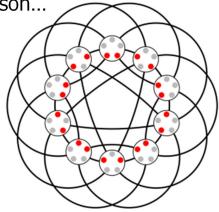
Landmark Algorithm Breaks 30-Year Impasse

Chicago, 10 de noviembre de 2015

NP completo
Clique

Teniendo cuidado con un caso particular:

Grafos simétricos de Johnson...



Isomorfismo de grafos

P

O (exp (polylog (n)) = O (exp (
$$(log n)^k$$
))

http://people.cs.uchicago.edu/~laci/quasipoly.html

Isomorfismo de (sub)grafos

Ejemplo

$$f(a) = 1$$

$$f(b) = 6$$

$$f(c) = 8$$

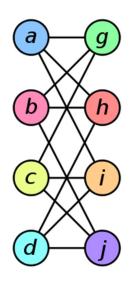
$$f(d) = 3$$

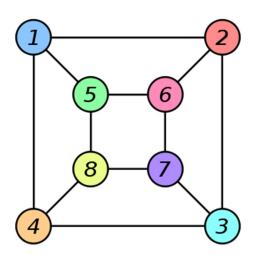
$$f(g) = 5$$

$$f(h) = 2$$

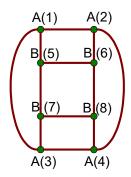
$$f(i) = 4$$

$$f(j) = 7$$

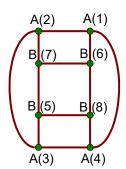




Un mismo grafo se puede representar de muchas formas:



	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1



	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	0	1	0	1	0	0
A(2)	1	1	1	0	0	0	1	0
A(3)	0	1	1	1	1	0	0	0
A(4)	1	0	1	1	0	0	0	1
B(5)	0	0	1	0	1	0	1	1
B(6)	1	0	0	0	0	1	1	1
B(7)	0	1	0	0	1	1	1	0
B(8)	0	0	0	1	1	1	0	1

Isomorfismo de (sub)grafos

- Cuando manejamos bases de datos de grafos, iii tenemos que comparar con conjuntos de grafos !!!
- Se hace imprescindible en la práctica el uso de técnicas de preprocesamiento e indexación.

Canonicalización

Cada grafo se convierte en una cadena ordenada (su "código") de forma que dos grafos isomorfos tendrán la misma codificación canónica.

Ejemplo: "Lexicographically largest adjacency matrix"

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

String: 0010001111010110 Canonical: 0111101011001000

Isomorfismo de (sub)grafos

Invariantes

Dados dos grafos $G_1(V_1,E_1)$ y $G_2(V_2,E_2)$, un invariante es una etiqueta $I(v_1)$ asignada a un vértice $v_1 \in G_1$ tal que, si existe un isomorfismo que asigna v_1 al vértice $v_2 \in G2$, entonces $I(v_1)=I(v_2)$.

EJEMPLOS

- Grado de un vértice
- Número de vecinos a distancia dos [two path]
- Triángulos adyacentes
- K-cliques (cliques de tamaño k que incluyen v)
- Conjuntos independientes de tamaño k que incluyen

Algoritmos

 $G_1(k)$

Subgrafo inducido de G₁ sobre los k primeros vértices

ESQUEMA GENERAL: BACKTRACKING

Para descubrir un isomorfismo entre dos grafos G_1 y G_2 , construimos un isomorfismo sobre $G_1(k)$ y lo extendemos a $G_1(k+1)$ añadiendo un nuevo vértice (los invariantes nos permitirán podar la búsqueda).

Isomorfismo de (sub)grafos

Algoritmos

ESQUEMA GENERAL: BACKTRACKING

```
MATCH (G_1, G_2, s)

if M_s covers all the vertices of G_1 then return M_s

else

foreach (v_1, v_2) \in P(s) do

if Compatible (v_1, v_2) then

s' \leftarrow s \cup (v_1, v_2)

MATCH (G_1, G_2, s')

done

return no match found
```


Algoritmo de Ullman (1976)

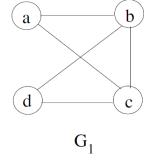
Propiedad de las matrices de adyacencia de dos grafos isomorfos: $A_2 = P A_1 P^T$, donde P es una matriz que representa una permutación (la que define el isomorfismo).

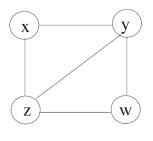
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} c & a & b \\ f & d & e \\ i & g & h \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} g & h & i \\ a & b & c \\ d & e & f \end{bmatrix}$$

Isomorfismo de (sub)grafos

Algoritmo de Ullman (1976)





 G_2

$$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$$

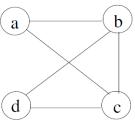
$$A_1 = \left[\begin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array} \right]$$

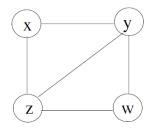
$$A_1 = \left[egin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}
ight], \quad A_2 = \left[egin{array}{ccccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}
ight]$$

Algoritmo de Ullman (1976)

$$C \rightarrow Z$$

$$d \rightarrow w$$





$$G_2$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right] \left[\begin{array}{cccc} \\ \end{array}\right]$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Isomorfismo de (sub)grafos

Algoritmo de Ullman (1976)

```
Input : G_1(V_1, E_1), G_2(V_2, E_2)
        P[n_2, n_2]: a permutation matrix
Output: G' \subset G_2 such that G' \cong G_1 if exists
n_1 \leftarrow |V_1| ; n_2 \leftarrow |V_2|
BackTrack(A_1,A_2,P,1)
procedure BACKTRACK(A_1, A_2, P, k)
    if k > n_1 then
        P represents a subgraph isomorphism from G_1 to G_2
        return(P)
    end if
    for i = 1 to n_2 do
        p_{ki} \leftarrow 1
        for all j = 1 to n_1, j = i do
            p_{kj} \leftarrow 0
        end for
        if S_{k,k}(A_1) = S_{k,n}(P)A_2(S_{k,n}(P)^T) then
             BackTrack(A_1,A_2,P,k+1)
        end if
    end for
```

end procedure

Tiempo $O(m^nn^2)$

Espacio $O(n^2m)$

nauty [McKay, 1981]

- Representa el grafo de forma canónica.
- Utiliza invariantes en la búsqueda de isomorfismos.
- Define particiones sobre los vértices (va dividiendo los vértices en conjuntos disjuntos).
 - Partición inicial (invariantes sobre el grafo completo).
 - Refinamiento (invariantes sobre cada partición).
 - Partición hoja (conjuntos de un nodo).

Isomorfismo de (sub)grafos

nauty

- Algoritmo:
 Búsqueda en profundidad en el espacio de particiones.
- Refinamiento de las particiones: Dada una partición $P=\{V_1..V_m\}$ en la que $\forall v,w \in V_i$, $d(v,V_i)=d(w,V_i)$
 - Seleccionar Vi∈P con más de un elemento.
 - $\forall v, w \in V_i$, calcular $d(v, V_i)$
 - Dividir V_i en subconjuntos que tengan el mismo valor para d(v,V_i).

nauty

- El refinamiento de las particiones se repite para todos los V_i hasta que ningún conjunto puede dividirse más.
- Los hijos de una partición se generan seleccionando, para cada vértice v∈V_i, una partición hija con los conjuntos {V₁, ..,V_{i-1},{v},V_i/{v},V_{i+1}, ..,V_m}.
- Nauty devuelve la representación canónica del grafo correspondiente a la matriz de adyacencia del menor automorfismo (isomorfismo del grado consigo mismo

Isomorfismo de (sub)grafos

nauty

```
Input : G_1(V_1, E_1)

Output : G_2(V_2, E_2) : a canonical graph

\mathcal{P} \leftarrow \text{partition of a single cell } V

S \leftarrow \text{stack containing } \mathcal{P}

while S \neq \emptyset do

u \leftarrow pop(S)

if u = leaf \ partition then

update(G_2, u)

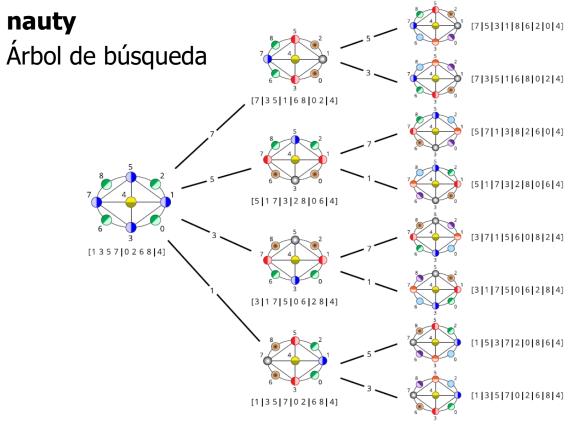
else

refine(u)

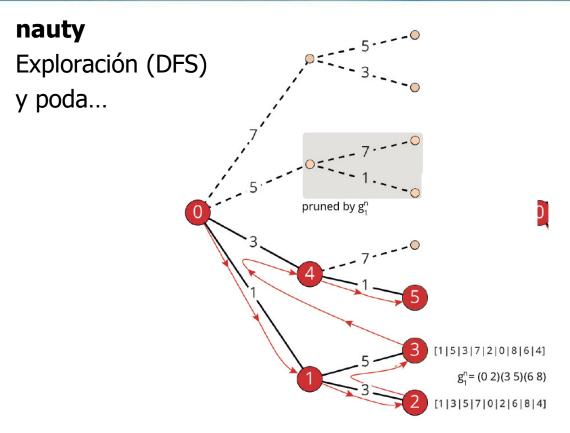
append children of u to S

end if

end while
```

Isomorfismo de (sub)grafos



VF₂

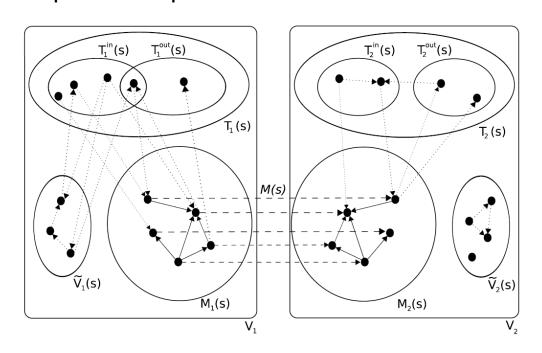
[Cordella et al., TPAMI 2004]

- DFS
- Reglas para podar el árbol de búsqueda que comprueban, para cada pareja de nodos candidatos, si el emparejamiento parcial es compatible.

	VF2 Mejor caso	Peor caso	Ullman Mejor caso	Peor caso
Tiempo	$\Theta(n^2)$	Θ(n!n)	$\Theta(n^3)$	$\Theta(n!n^2)$
Espacio	Θ(n)	Θ(n)	$\Theta(n^3)$	$\Theta(n^3)$

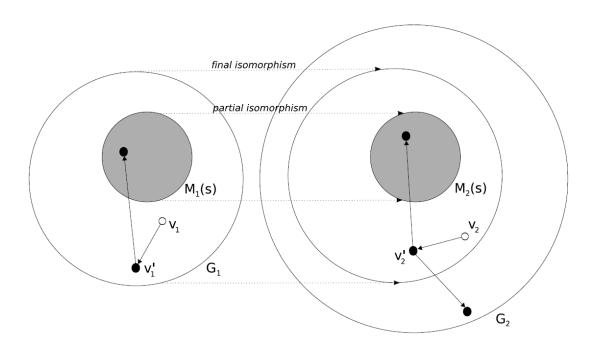
Isomorfismo de (sub)grafos

VF2Correspondencia parcial



VF₂

"look-ahead"



Isomorfismo de (sub)grafos

VF2

```
procedure MATCH(G_1, G_2, s)
    Input: two graphs G_1 and G_2, an intermediate state s
    initial state s_0 has M(s_0) = \emptyset
    Output: the mappings between G_1 and G_2
    if M_s covers all nodes of G_1 then
       return(M_s)
    else
       compute P(s) of candidate pairs to be included in M(s)
       for all p \in P(s) do
           if p is compatible with M(s) then
               s' \leftarrow p \cup M(s)
               compute state s' obtained by adding p to M(s)
               Match(G_1,G_2,s')
           end if
       end for
       restore data structures
    end if
end procedure
```


VF₂

	Randomly Connected			2D (regular and irregular) Mesh				Bounded valence		
Nodes	$\eta = 0.01$	η=0.05	η=0.1	regular	ρ=0.2	ρ=0.4	ρ=0.6	ν=3	ν = 6	ν = 9
20	VF2	VF2	Nauty	VF2	Nauty	Nauty	Nauty	Nauty	Nauty	Nauty
40	VF2	Nauty	Nauty	VF2	VF2	Nauty	Nauty	Nauty	Nauty	Nauty
60	VF2	Nauty	Nauty	VF2	VF2	VF2	Nauty	VF2	Nauty	Nauty
80	VF2	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	Nauty	Nauty
100	VF2	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	Nauty	Nauty
200	VF2	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	VF2	Nauty
400	Nauty	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	VF2	Nauty
600	Nauty	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	VF2	Nauty
800	Nauty	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	VF2	VF2
1000	Nauty	Nauty	Nauty	VF2	VF2	VF2	VF2	VF2	VF2	VF2

Isomorfismo de (sub)grafos

BM1

[Battiti & Mascia, SLS'2007]

- Mejora de VF2 en tiempo de CPU.
- IDEA: "local-path-based pruning"

Si existe un camino de longitud d desde v_1 en G_1 , debe existir el mismo camino desde v_2 en G_2 para que el par (v_1, v_2) sea compatible.

BM1

[Battiti & Mascia, SLS'2007]

```
procedure Compatible Paths (v_1, v_2, d)
Output: the mappings between G_1 and G_2
for all x in 1, ..., d do
for all y in 1, ..., 2^d do
if PathsDS[v_1][x][y] > PathsDS[v_2][x][y] then
return false
end if
end for
end procedure

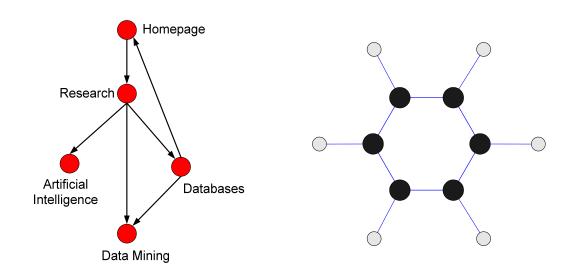
BM1
```

	BM1	VF2		
Tiempo	$O(n^d+n!n)$	O(n!n)		
Espacio	$\Theta(n2^{d+1})$	O(n)		

Subgrafos frecuentes

Identificación de patrones frecuentes en grafos

Aplicaciones: Web Mining, Bioinformática, redes sociales...



Grafo dirigido

Grafo no dirigido

Subgrafo

Un grafo g es un subgrafo de otro grafo G ($g \subseteq G$) si existe un isomorfismo de subgrafos de g a G.

Subgrafo frecuente

Dada una base de datos de grafos (o un único grafo enorme), un subgrafo es frecuente si su soporte (frecuencia de ocurrencia) no es menor que un umbral de soporte mínimo preestablecido.

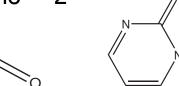
Subgrafos frecuentes

Ejemplo

Conjunto de datos (grafos no dirigidos)

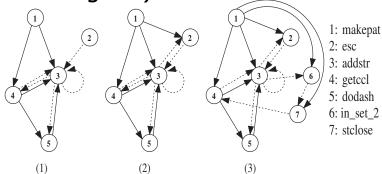
Patrones frecuentes

Umbral de soporte mínimo = 2



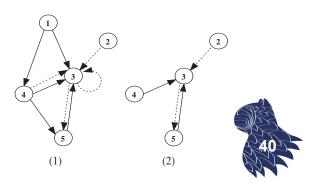
Ejemplo

Conjunto de datos (grafos dirigidos)



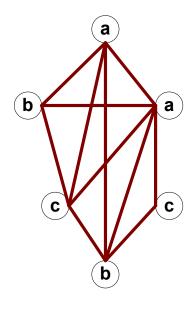
Patrones frecuentes

Umbral de soporte mínimo = 2

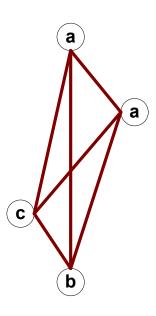


Subgrafos frecuentes

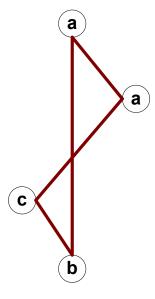
Tipos de subgrafos frecuentes



Grafo original



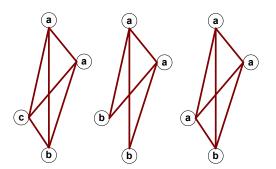
Subgrafo inducido



Subgrafo empotrado

Conteo del soporte (número de ocurrencias)

- Soporte [support]:
 Número de grafos en la base de datos que contienen al menos una ocurrencia del subgrafo.
- Soporte ponderado [weighted support]
 Número total de ocurrencias del subgrafo en todos los grafos de la base de datos.



Base de datos



Subgrafo

Subgrafos frecuentes

Algoritmos

Búsqueda dirigida [beam search]

■ **SUBDUE** [Holder et al., KDD'1994] [Cook & Holder, IEEE Intelligent Systems, 2000]

Inductive Logic Programming (ILP): Datalog

WARMR [Dehaspe et al., KDD'1998 & DMKD'1999]

Patrones frequentes

- Tipo Apriori: AGM/AcGM, FSG, "disjoint paths", SiGram
- Tipo FP-Growth:
 MoFa, gSpan, FFSM, Gaston, CloseGraph, Spin

Subgrafos frecuentes: SUBDUE

Búsqueda dirigida

Se limita el número de "mejores" subestructuras.

MDL [Minimum Description Length]

- Las subestructuras se evalúan en función de su capacidad para "comprimir" los grafos de entrada.
- La mejor subestructura S de un grafo G minimiza DL(S)+DL(G\S)

Algoritmo greedy: Comenzando con vértices individuales, se añaden nuevas aristas a las mejores subestructuras encontradas hasta que no se puedan encontrar nuevas subestructuras.

Subgrafos frecuentes

Propiedad clave

ANTI-MONOTONICIDAD a.k.a. propiedad Apriori

Un subgrafo de tamaño k es frecuente sólo si todos sus subgrafos son frecuentes.

Nota: Un grafo con n aristas tiene 2ⁿ subgrafos...

Subgrafos frecuentes: WARMR

Algoritmo basado en ILP [Inductive Logic Programming] para extraer patrones de datos estructurados.

Uso de Datalog para representar tanto los datos como los patrones descubiertos.

```
?- six\_ring(C,S), atomel(C,A1,h), atomel(C,A2,c), bond(C,A1,A2,X), occurs\_in(A2,S) (frequency: 157 compounds (70%), i.e., "a hydrogen atom bound to a carbon atom in a six ring".
```

Primer sistema que aprovecha la propiedad Apriori.

Artículo original (KDD'1998): Aplicación a la predicción de químicos carcinógenos.

Subgrafos frecuentes

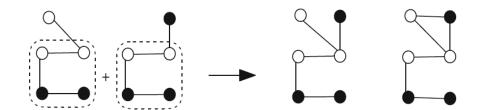
Caracterización de los algoritmos de identificación de subgrafos frecuentes

- Tipo de grafos (dirigidos/no-dirigidos, etiquetados...)
- Tipo de patrones identificados (inducidos/empotrados)
- Cálculo del soporte
- Orden de búsqueda (anchura vs. profundidad)
- Generación de candidatos (Apriori vs FP-Growth)
- Eliminación de duplicados
- Orden de identificación de patrones (p.ej. camino → árbol → grafo)

Algoritmos basados en Apriori

Búsqueda en anchura

Grafos con k elementos \rightarrow Grafos con k+1 elementos



- AGM [Inokuchi et al., PKDD'2000 & Machine Learning '2003] genera grafos candidatos con un nuevo nodo.
- FSG [Kuramochi & Karypis, ICDM'2001 & TKDE'2004]
 genera grafos candidatos con una nueva arista.

Subgrafos frecuentes: Apriori

Algoritmos basados en Apriori

Apriori (D, min_sup, S_k)

Input: Graph dataset D, minimum support threshold min_sup , size-k frequent subgraphs S_k Output: The set of size-(k+1) frequent subgraphs S_{k+1}

```
1: S_{k+1} \leftarrow \varnothing;

2: for each frequent subgraph g_i \in S_k do

3: for each frequent subgraph g_j \in S_k do

4: for each size-(k+1) graph g formed by joining g_i and g_j do

5: if g is frequent in D and g \notin S_{k+1} then

6: insert g to S_{k+1};

7: if S_{k+1} \neq \varnothing then

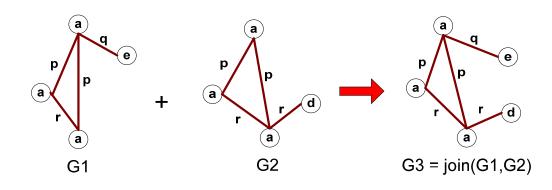
8: call Apriori(D, min\_sup, S_{k+1});

9: return;
```


AGM: Apriori-based Graph Mining

[Inokuchi et al., PKDD'2000 & Machine Learning'2003]

Vertex growing

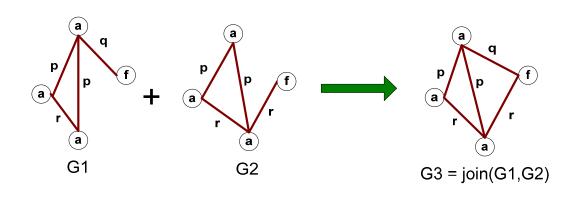


Subgrafos frecuentes: Apriori

FSG: Frequent Sub-Graph discovery

[Kuramochi and Karypis, ICDM'2001 & IEEE TKDE'2004]

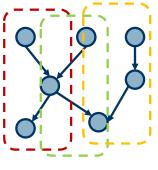
Edge growing



JoinPath [Vanetik et al., ICDM'2002 & ICDE'2004] [Gudes et al., IEEE TKDE'2006]

EDPs = Edge-disjoint paths (caminos sin aristas comunes)

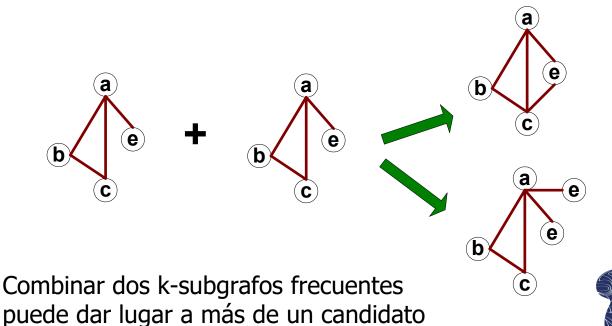
- Identificar caminos frecuentes
- Identificar grafos frecuentes con 2 "edge-disjoint paths"
- Iterativamente, construir grafos con k+1 EDPs a partir de grafos con k EDPs.



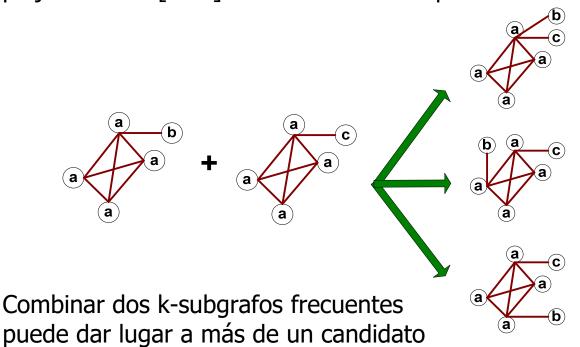
Grafo con 3 EDPs

Subgrafos frecuentes: Apriori

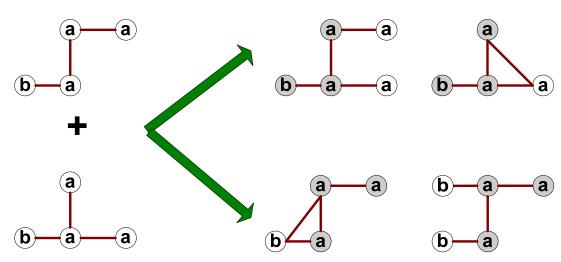
Generación de candidatos [edge growing] p.ej. Mismas etiquetas en distintos nodos



Generación de candidatos [edge growing] p.ej. "Núcleo" [core] con las mismas etiquetas

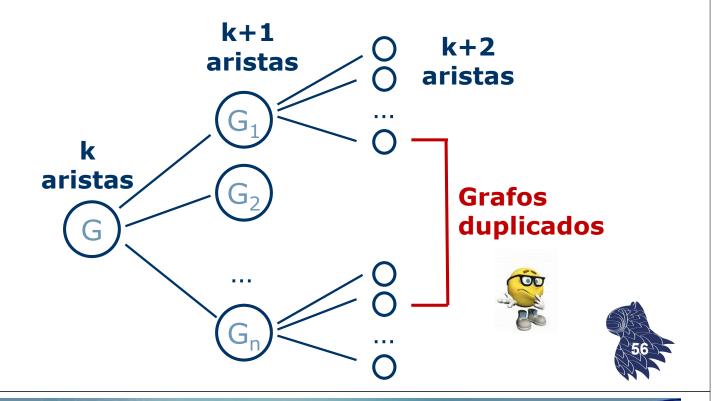


Generación de candidatos [edge growing] p.ej. Múltiples núcleos



Combinar dos k-subgrafos frecuentes puede dar lugar a más de un candidato

Problema de los algoritmos basados en Apriori



Subgrafos frecuentes: FP-Growth

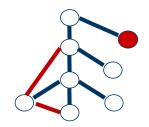
Algoritmos derivados de FP-Growth

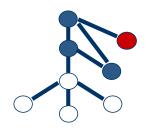
- Inspirados en PrefixSpan (secuencias),
 TreeMinerV y FREQT (árboles).
- Extienden los patrones frecuentes directamente (añadiendo una arista, en todas las posiciones posibles).
- Evitan la reunión de dos patrones para generar nuevos candidatos (operación más costosa en los algoritmos derivados de Apriori).

gSpan

[Yan & Han, ICDM'2002]

"Right-most extension"



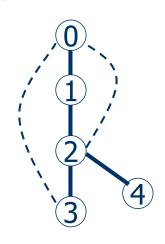


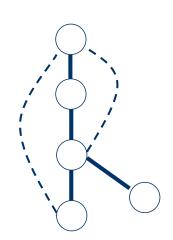
La enumeración de grafos usando su "extensión más a la derecha" es completa.

Subgrafos frecuentes: FP-Growth

gSpan

[Yan & Han, ICDM'2002]





e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

59

Búsqueda en profundidad (DFS) Grafo → Secuencia de aristas

Gaston [Nijssen and Kok, KDD'2004] **GrAph, Sequences and Tree extractiON algorithm**

Separa la identificación de distintos tipos de patrones, ya que la identificación de estructuras más simples es mucho más eficiente (así como la eliminación de duplicados):

caminos \rightarrow árboles \rightarrow grafos

Subgrafos frecuentes: FP-Growth

CloseGraph [Yan & Han, KDD'2003]

- Grafo cerrado:
 Un grafo G se dice cerrado si no existe ningún supergrafo de G que tenga el mismo soporte que G.
- IDEA: Compresión sin pérdidas

Si hay subgrafos de G con exactamente su mismo soporte, no es necesario identificarlos (grafos no cerrados).

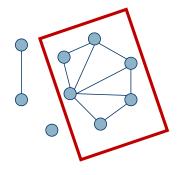
CloseGraph [Yan & Han, KDD'2003]

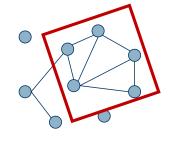
Dados dos grafos frecuentes G y G', con G subgrafo de G', si siempre que encontramos G en nuestros datos también aparece G'

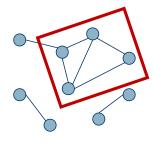
- Sólo serán cerrados los descendientes de G que sean también descendientes de G'.
- No es necesario que sigamos expandiendo G para encontrar nuevos patrones, salvo en situaciones muy puntuales ["tricky exception cases"]...

Subgrafos frecuentes: FP-Growth

CloseCut & Splat [Yan, Zhou & Han, KDD'2005] Subestructuras densas

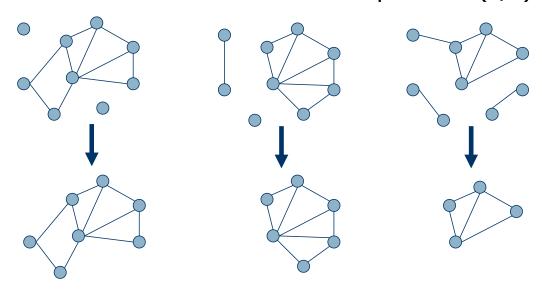






Restricciones adicionales nos permiten optimizar los algoritmos de identificación de subgrafos frecuentes (conectividad, grado, diámetro, densidad...)

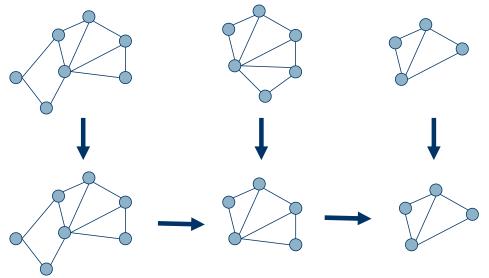
CloseCut & Splat [Yan, Zhou & Han, KDD'2005] Subestructuras densas: Reducción de patrones (1/2)



Descomposición de grafos en función de su conectividad

Subgrafos frecuentes: FP-Growth

CloseCut & Splat [Yan, Zhou & Han, KDD'2005] Subestructuras densas: Reducción de patrones (2/2)



Intersección y descomposición de subgrafos (**Splat**)

Otros algoritmos

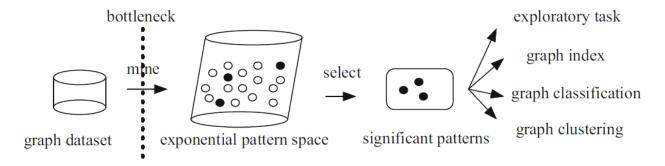
- MoFa [Borgelt & Berthold, ICDM'2002]
- FFSM [Han et al., ICDM'2003]
- SPIN [Huan et al., KDD'2004]
- GREW [Kuramochi & Karypis, ICDM'2004]
- SiGram [Kuramochi & Karypis, DMKD'2005]
- TSMiner [Jin et al., KDD'2005]
- MARGIN [Thomas et al., KDD'2006]

. . .

Subgrafos frecuentes

PROBLEMA

Para encontrar todos los grafos frecuentes, tenemos que analizar un número exponencial de subgrafos...



¿Cómo evitar la explosión combinatoria en la práctica?

Modelos escalables

Evitan la explosión combinatoria (la generación de un número exponencial de grafos)

- Subgrafos significativos [He & Singh, ICDM'2007]:
 gboost [Kudo et al., NIPS'2004]
 gPLS [Saigo et al., KDD'2008]
 LEAP [Yan et al., SIGMOD'2008]
 GraphSig [Ranu & Singh, ICDE'2009]
- Subgrafos representativos:ORIGAMI [Hasan... & Zaki, ICDM'2007]

Subgrafos frecuentes

Modelos escalables

Subgrafos densos

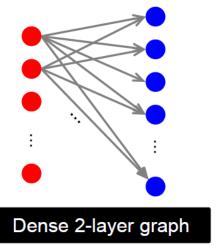
- Cliques & cuasi-cliques (problema NP)
 H*Graph [Cheng et al., SIGMOD'2010+KDD'2012&13]
- K-cores: O(m)EMcore [Cheng et al., ICDE'2011]
- K-trusses = Triangle k-cores: O(m^{1.5})
 [Wang & Cheng, PVLDB'2012]
 [Zhang & Partharasany, ICDE'2012]

Modelos escalables: Trawling

Subgrafos bipartidos frecuentes p.ej. Pequeñas comunidades en la Web

Problema formal:

Enumerar todos los grafos bipartidos completos K_{s,t}



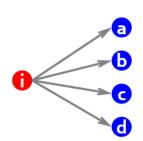
¿Cómo?

Encontrando itemsets frecuentes...

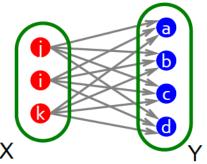
Subgrafos frecuentes

Modelos escalables: Trawling

Itemsets frecuentes = Grafos bipartidos completos $K_{s,t}$



$$S_i = \{a,b,c,d\}$$



- Cada nodo i puede verse como el conjunto de nodos a los que apunta S_i.
- K_{s,t} es el conjunto de tamaño t que ocurre en s conjuntos S_i.

Buscar los grafos bipartidos completos $K_{s,t}$ es buscar t-itemsets frecuentes usando s como umbral :-)

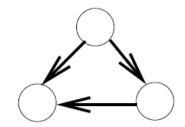
Modelos escalables: Subgrafos pequeños

"Motif" de tamaño k

Pequeño grafo conectado con k vértices/nodos que aparece en una red con más frecuencia de la esperada.

Ejemplo

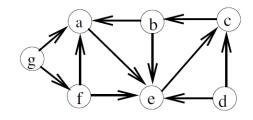
Feed-forward loop

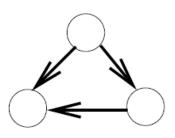


Motif Discovery

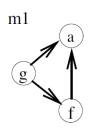
Ejemplo: Feed-forward loop

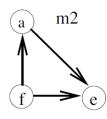
Grafo de entrada

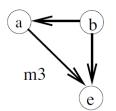


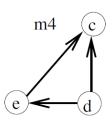


Ocurrencias del patrón

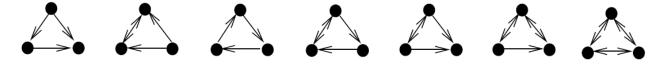








Los 13 "motifs" dirigidos de tamaño 3:

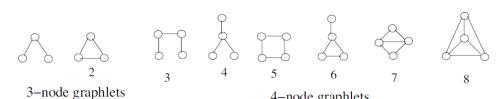


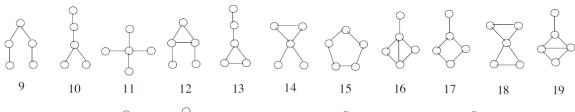
Número exponencial de posibles "motifs": O(2n(n-1))

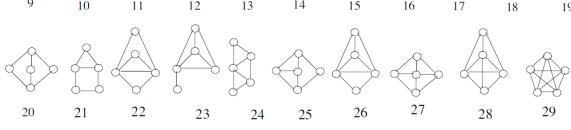
Motif size	3	4	5	6	7	8	9	10
Undirected subgraphs	2	6	21	112	853	$\approx 10^4$	$\approx 10^5$	$\approx 10^7$
Directed subgraphs	13	199	9364	10^{6}	$\approx 10^9$	$\approx 10^{12}$	$\approx 10^{16}$	$\approx 10^{20}$

Motif Discovery

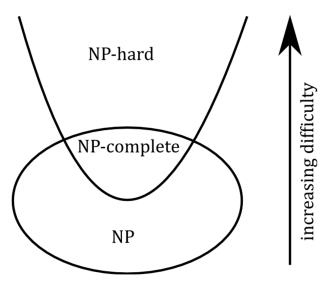
"Graphlets" de tamaños 3, 4 y 5







Encontrar el número de apariciones de un "motif" es un problema NP-hard (encontrar una aparición concreta de un "motif" en un grafo también lo es), por lo que se hace necesario el uso de heurísticas.



 Encontrar y agrupar "motifs" isomórficos es un problema equivalente a encontrar los subgrafos isomórficos del patrón buscado (NP-completo).

Motif Discovery

Para evaluar la importancia de la aparición de un "motif" en un grafo, es necesario identificar sus ocurrencias en el grafo y también en redes aleatorias.

Una versión aleatoria R de un grafo G, similar en su estructura a G, se conoce como modelo nulo [null model].

Existe una familia $\Psi(G)$ de grafos aleatorios con propiedades similares a G (tamaño, secuencia de grados...), por lo que se genera una muestra S de n grafos de $\Psi(G)$ y se calcula la frecuencia de un "motif" tanto en el grafo G como en la muestra S.

Si la frecuencia de un patrón m es significativamente mayor en G que su frecuencia media en la muestra S de $\Psi(G)$, entonces se acepta como "motif":

Z-score: e.g. Z(m)>2.0

$$Z(m) = \frac{F_1(m) - \overline{F_{1,r}(m)}}{\sigma_r(m)}$$

P-value: e.g. P(m)<0.05</p>

$$P(m) = \frac{1}{n} \sum_{i=1}^{n} \sigma_{R_i}(m)$$

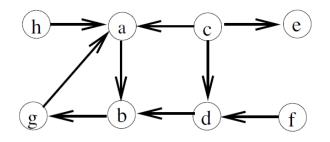
Significance profile: $SP(m_i) = \sqrt{2}$ (comparación de redes con respecto a los motifs que contienen

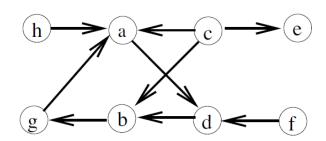
$$SP(m_i) = \frac{Z(m_i)}{\sqrt{\sum_{i=1}^{n} Z(m_i)^2}}$$
 que contienen)

Motif Discovery

Generación de modelos nulos

Grafos del mismo tamaño pero distinta topología que preserven su secuencia de grados (y los grados de entrada y salida para cada nodo).





- Se escogen dos arcos al azar: (a,b), (c,d)
- Se cruzan sustituyéndolos por (a,d), (c,b)

Generación de modelos nulos

Método basado en cadenas de Markov

```
Input : G(V,E)

Output : Random graph G'(V',E') similar to G

G' \leftarrow G

while G' is not as randomized as required do

pick two random edges (a,b),(c,d) \in E'

if (a,d) \notin E' \land (c,b) \notin E' then

E' \leftarrow E' \setminus \{(a,b),(c,d)\}

E' \leftarrow E' \cup \{(a,d),(c,b)\}

end if

end while
```


Motif Discovery

Fases en la identificación de motifs

- Descubrir los motifs m₁..m_n que ocurren en G con más frecuencia de la esperada.
- Agrupar los motifs m₁..m_n en clases isomórficas C₁..C_k de forma que todos los motifs topológicamente equivalentes estén en la misma clase.
- Determinar cuáles de las clases identificadas ocurren en G con mucha más frecuencia que en grafos aleatorios topológicamente similares a G.

Algoritmos de identificación de motifs

- EXACT CENSUS ALGORITHMS
 Los algoritmos exactos intentan encontrar todas las ocurrencias de un motif en una red.
- APPROXIMATE CENSUS ALGORITHMS
 Los algoritmos aproximados, por cuestiones de eficiencia, muestrean subgrafos [subgraph sampling].

Motif Discovery

Mfinder

Enumeración completa

- Para cada arista del grafo, se construye un subgrafo
 G' alrededor de la arista.
- Se van añadiendo a este grafo vértices vecinos a cualesquiera de los vértices del grafo parcial G' hasta que el tamaño de G' coincida con el de los motids buscados.

Mfinder

```
Input : G(V,E)

    ▶ weighted or unweighted

       int 2 \le k \le n
Output: Subgraphs of size k
for all (u, v) \in E do

    b do it for all edges

   Extend(\{u,v\})
end for
procedure Extend (G')
   if |G'| = k then

    if required size is reached

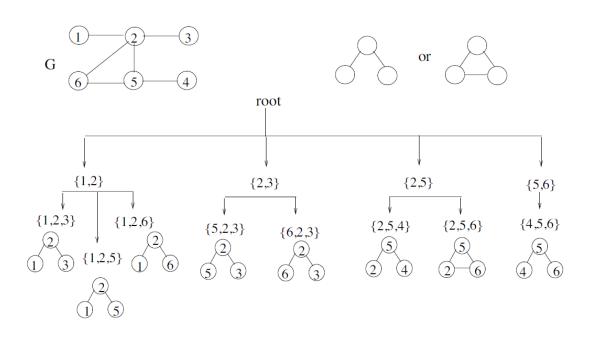
       if G' is unique then
           increment frequency of isomorphic class of G'
           insert G' in Hash
           for all u \in G' do
               for all (u, w) \in E do
                                                               if w \notin G' then
                       if G' \cup \{w\} is not in Hash then
                           Extend(G' \cup \{w\})
                   end if
               end for
           end for
       end if
   end if
```


Motif Discovery

end procedure

Mfinder

Enumeración completa



ESU [Enumerate SUBgraphs]

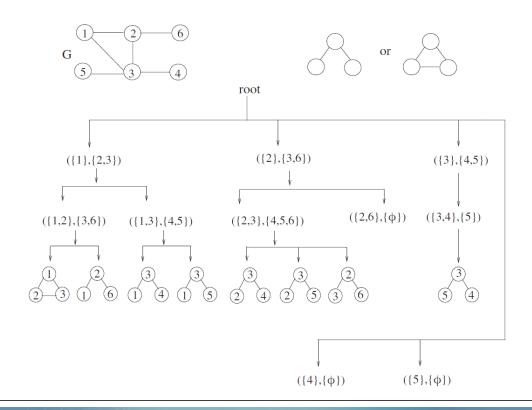
- Genera sistemáticamente todos los subgrafos de tamaño k: empezando con un vértice v, añade nuevos vértices ordenadamente para asegurar que cada subgrafo sólo se enumera una vez.
- Algoritmo incorporado en la herramienta FANMOD.
- Utiliza Nauty para calcular isomorfismos.

Motif Discovery

ESU [Enumerate SUBgraphs]

```
Input : G(V,E), int 1 \le k \le n
Output: All k-size subgraphs of G
for all v \in V do
    V_{ext} \leftarrow \{u \in N(v) : u > v\}
    ExtSubgraph(\{v\}, V_{ext}, v)
end for
procedure EXTSUBGRAPH(V_s, V_{ext}, v)
    if |V_s| = k then output G[V_s]
         return
    end if
    while V_{ext} \neq \emptyset do
         V_{ext} \leftarrow V_{ext} \setminus \{\text{an arbitrary vertex } w \in V_{ext}\}
         V'_{ext} \leftarrow V_{ext} \cup \{u \in N_{excl}(w, V_s) : u > v\}
         ExtSubgraph((V_s \cup \{w\}, V'_{ext}, v))
    end while
    return
end procedure
```


ESU [Enumerate SUBgraphs]



Motif Discovery

Kavosh

Para que cada subgrafo sólo se enumere una vez:

- Se encuentran todos los subgrafos de tamaño k que incluyen un vértice v (explorando un árbol de profundidad k con él vértice v como raíz).
- Se elimina el vértice v del grafo.

NOTA:

También utiliza Nauty para comprobar isomorfismos.

Kavosh

```
procedure ENUMVERTEX(G, v, S, rem)
    if rem = 0 then
        return
    else
        List \leftarrow Validate(G, S_{i-1}, v)
        n_i \leftarrow min(|List|, rem)
        for k_i = 1 to n_i do
             C \leftarrow InitialComb(List, k_i)
             repeat
                 S_i \leftarrow C
                 EnumVertex(G, v, S, rem - k_i, i + 1)
                 NextComb(List, k_i)
             until C = \emptyset
        end for
        for all u \in List do
             visited[u] \leftarrow false
        end for
    end if
end procedure
```

```
Input: G(V,E) undirected or directed

Output: L: List of all k-size subgraphs of G

for all v \in V do

visited[v] \leftarrow true; S_0 \leftarrow v

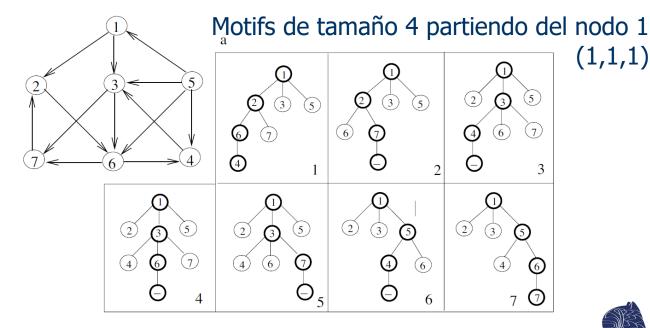
EnumVertex(G, v, S, k - 1, 1)

visited[v] \leftarrow true

end for
```


Motif Discovery

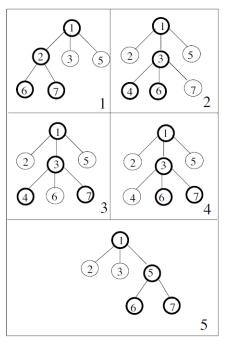
Kavosh

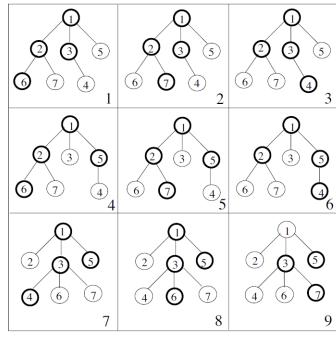


Kavosh

(1,2)

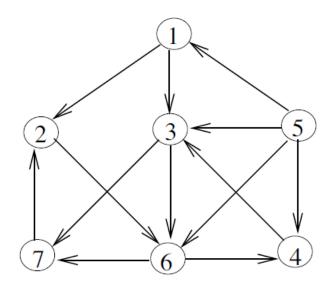
(2,1)

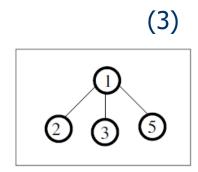




Motif Discovery

Kavosh





MODA

Pattern growth

Árboles de expansión

- Un nodo a nivel k corresponde a un grafo de tamaño k con k-1 aristas (la raíz está a nivel 0).
- El número de nodos del primer nivel corresponde al número de árboles no isomórficos de tamaño k.
- Cada nodo es un subgrafo de sus hijos.
- La única hoja a nivel (k²-3k+4)/2 corresponde al grafo completo K_k.
- El camino más largo de la raíz a la hoja tiene longitudo (k² -3k+4)/2.

Motif Discovery

MODA

```
Input : G(V,E), int 1 \le k \le n, \Delta : threshold value

Output : L : List of frequent k-size subgraphs of G

repeat

G'(V',E') \leftarrow Get\_Next\_BFS(T_k)

if |E'| = k - 1 then

MappingModule(G',G)

else

EnumeratingModule(G',G,T_k)

end if

save F_2

end if |F_G| > \Delta then

L \leftarrow L \cup G'

end if

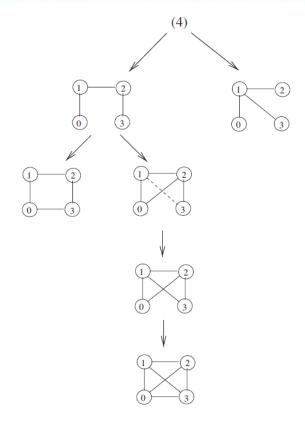
until |E'| = (k-1)/2

procedure of E and E are an arrange of E and E and E are an arrange of E and E are an arrange of E and E are a constant of E and E are a constant on E and E are a constant of E and E are
```

```
procedure ENUMERATINGMODULE(G', G, T_k)
   F_G \leftarrow \emptyset
   H \leftarrow Get\_Parent(G', T_k)
   get F_H from memory
   (u,v) \leftarrow E(G') - E(H)
   for all f \in F_H do
       if f(u), f(v) \in G and \langle f(u), f(v) \rangle violates
          the corresponding conditions then
           add f to F'_G
       end if
   end for
   return F_G
end procedure
procedure MappingModule(G, G')
   Grochow\_Kellis(G',G)
end procedure
```


MODA

Pattern growth



Motif Discovery

Algoritmos aproximados

PROBLEMA:

El número de subgrafos crece exponencialmente tanto con el tamaño de la red como con el tamaño del patrón investigado.

SOLUCIÓN:

Utilización de algoritmos probabilísticos aproximados.

- Se muestrean subgrafos del tamaño requerido a partir del grafo original.
- La precisión (y el coste computacional) aumenta cuantas más muestras utilicemos.

Mfinder con muestreo

Selección aleatoria de aristas

```
procedure EDGESAMPLE(G, k)
     Input : G(V,E),
               int 2 < k < n
     Output: A subgraph of size k
     E_s \leftarrow \emptyset; V_s \leftarrow \emptyset
     pick a random edge (u, v) \in E
     E_s \leftarrow (u, v); V_s \leftarrow \{u, v\}
     while |V_s| \neq k do
          L \leftarrow \text{neighbor edges of } \{u, v\}
          L \leftarrow L \setminus \{ \text{ all edges between the vertices in } V_s \}
          if L = \emptyset then exit
          end if
          pick a random edge (w,z) \in L
          V_s \leftarrow V_s \cup \{w,z\}
          E_s \leftarrow E_s \cup (w,z)
     end while
     return V_s
end procedure
```


Motif Discovery

ESU probabilístico

Exploración probabilística del árbol ESU

```
procedure Ext\_Subgraph(V_s, V_{ext}, v)
Input : G(V,E), int 1 \le k \le n
                                                           if |V_s| = k then output G[V_s]
Output: All k-size subgraphs of G
                                                                return
for all v \in V do
                                                           end if
    V_{ext} \leftarrow \{u \in N(v) : u > v\}
                                                           while V_{ext} \neq \emptyset do
     With probability P_d
                                                                V_{ext} \leftarrow V_{ext} \setminus \{ \text{an arbitrary vertex } w \in V_{ext} \}
              Ext\_Subgraph(\{v\}, V_{ext}, v)
                                                                V_{ext} \leftarrow V_{ext} \cup \{u \in N_{excl}(w, V_s) : u > v\}
end for
                                                                V_s' \leftarrow V_s \cup \{w\}
                                                                With probability P_{|V'|}
                                                                          Ext\_Subgraph((V_s \cup \{w\}, V'_{ext}, v))
                                                           end while
                                                           return
                                                      end procedure
```


MODA con muestreo

Estimación de la frecuencia de un subgrafo

```
Input: network graph G(V, E), query graph G'(V', E')
Output: approximate frequency and mapping of G'
procedure MAPSAMPLE(G')

for i = 1 to n_s amples do

select u \in V with probability deg(v)

for all v \in V' do

if deg(u) \ge deg(v) then

Grochow(G') with f(v) = u

end if

V \leftarrow V \setminus \{u\}

end for
end procedure
```


Motif discovery

¿De qué tamaño podemos encontrar motifs?

Sistema utilizado	Tamaño máximo de los motifs descubiertos
Mfinder	5
Mfinder con muestreo	6
FPF	9
NeMoFinder	12

Graph500

Supercomputación sobre grafos

http://www.graph500.org/

Noviembre 2015

Sistema	País	Nodos	Cores	GTEPS
Fujitsu K	Japón	82944	663552	38621
IBM BlueGene/Q	USA	98304	1572864	23751
Tianhe-2	China	8192	196608	2061
SGI UV 2000	USA	1	1280	174
i5 + NVIDIA GPU	USA	1	28	132
i7	USA	1	4	1.28
Apple MacBook Air	USA	1	2	1.22
Apple iPad	USA	1	2	0.03

Benchmark basado en algoritmos sobre grafos: 3 kernels

- Búsqueda (concurrente),
- Optimización (caminos mínimos)
- Procesamiento de aristas [maximal independent set]

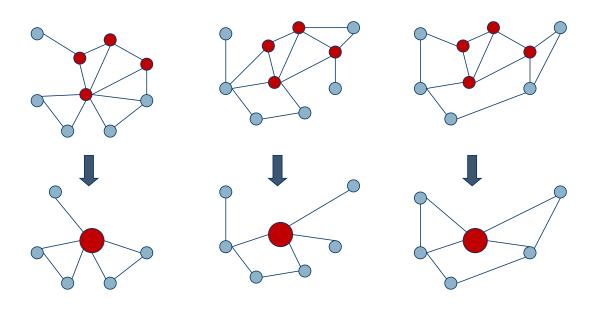
Aplicaciones

- Compresión de datos
- Indexación
- Recuperación de información
- Redes de interacción de proteínas (PPI)

Aplicaciones: Compresión

Compresión de datos

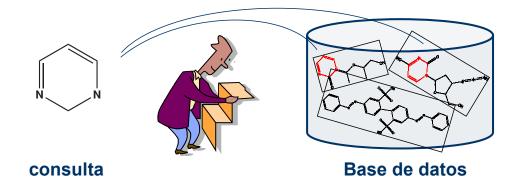
Extraer subgrafos comunes y condensar éstos en un solo nodo



Aplicaciones: Indexación

Indexación

En consultas sobre bases de datos de grafos, recorrer secuencialmente toda la base de datos sería demasiado ineficiente tanto por las operaciones de E/S como por las comprobaciones de isomorfismo entre grafos



p.ej. GraphGrep, Grace, gIndex

Aplicaciones: Indexación

Si un grafo G contiene el grafo Q, G debe contener cualquier subestructura de Q:

Indexar las subestructuras del grafo Q para podar los grafos que no contienen esas subestructuras:

- Construcción del índice: Enumerar estructuras para construir un índice invertido (estructuras → grafos).
- Consulta: Obtener candidatos (grafos que contienen las subestructuras encontradas en el grafo de consulta) y podar los falsos positivos (mediante un test de isomorfismo entre grafos).

Aplicaciones: Indexación

¿Qué estructuras se incluyen en el índice?

- Caminos.
- Estructuras de interés
- Estructuras frecuentes.
- Estructuras discriminantes.

IDEA:

Cuanto más se reduzca el número de falsos positivos, menor será el tiempo de respuesta

$$T_{index} + C_q \times (T_{io} + T_{isomorphism_testing})$$

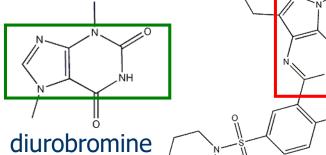
Aplicaciones: SRI

Recuperación de información

Grafo de la consulta

Resultado de la consulta

cafeína



Viagra

Aplicaciones: SRI

Alternativas de diseño:

Soluciones exactas (problema NP-completo)

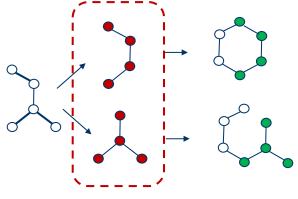
- Calcular la similitud entre los grafos de la base de datos y el grafo de consulta (recorrido secuencial)
- 2. Crear subgrafos del grafo de consulta y hacer una búsqueda exacta (tendremos que probar multitud de subgrafos si queremos encontrar todos los grafos que sean "aproximadamente" iguales al grafo de consulta).

Aplicaciones: SRI

Alternativas de diseño: Soluciones aproximadas (heurísticas P)

3. Similitud "subestructural"
Selección de características e indexación

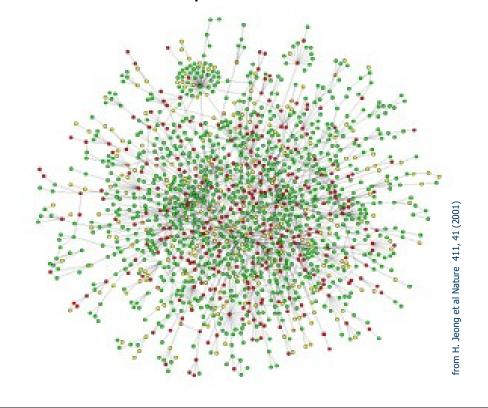
p.ej. Grafil



IDEA: Si un grafo G contiene al grafo de consulta Q, G debería compartir características con Q.

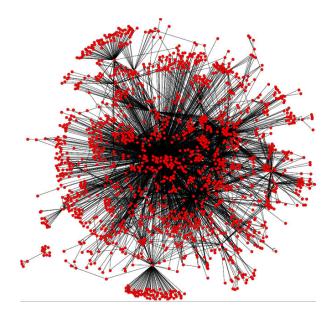
Aplicaciones: PPI

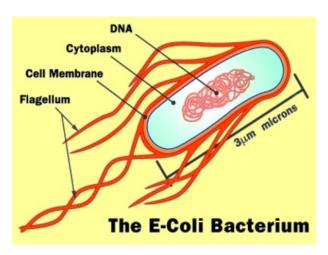
Interacciones de la proteína de la levadura



Aplicaciones: PPI

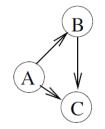
E-coli transcriptional regulatory network

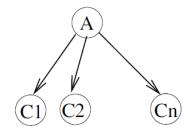


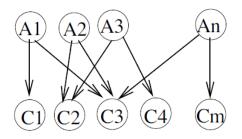


Aplicaciones: PPI

E-coli transcriptional regulatory network Motifs frecuentes







Feedforward Loop Single input module (SIM)

Dense overlapping regions (DOR)

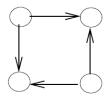
Aplicaciones

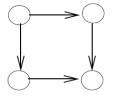
Motifs frecuentes en distintos tipos de redes

Redes regulatorias de genes

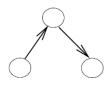
Redes neuronales

Redes tróficas [food webs]





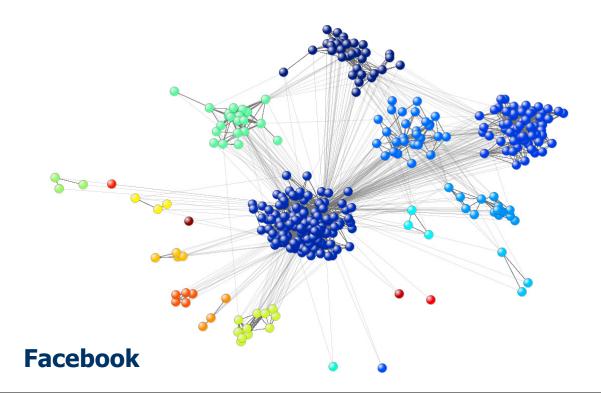
Biparallel



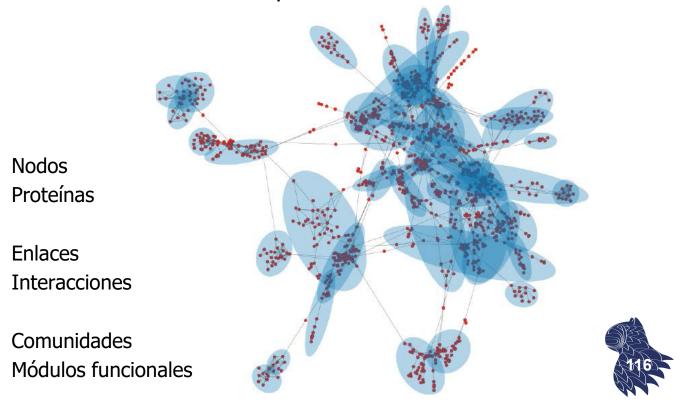
Three-chain

Detección de comunidades

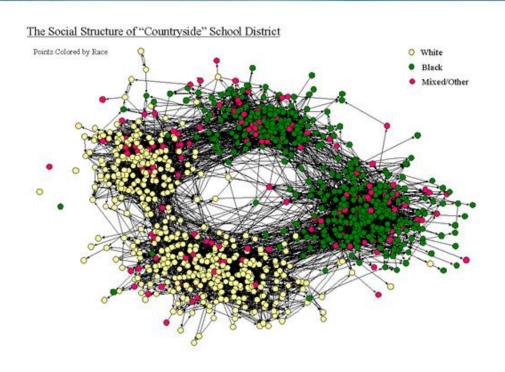
Redes sociales



Redes de interacción de proteínas



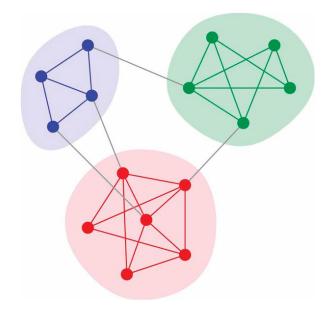
Detección de comunidades



Red social FOAF [Friend of a Friend]

El problema

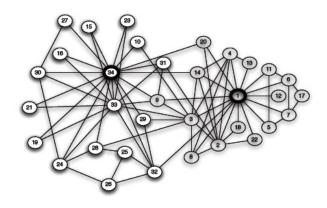
Agrupamiento [clustering] en redes



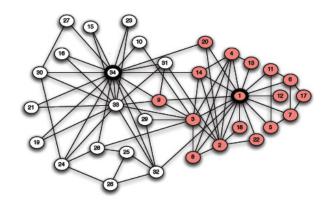
Detección de comunidades

Ejemplo

Club de kárate



(a) Karate club network



(b) After a split into two clubs

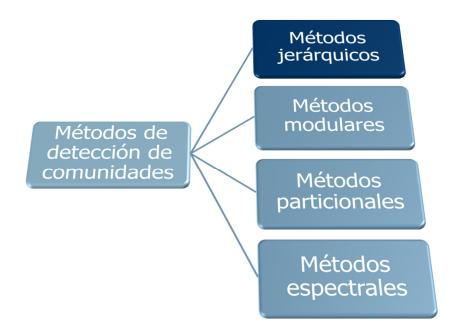
W. W. Zachary:

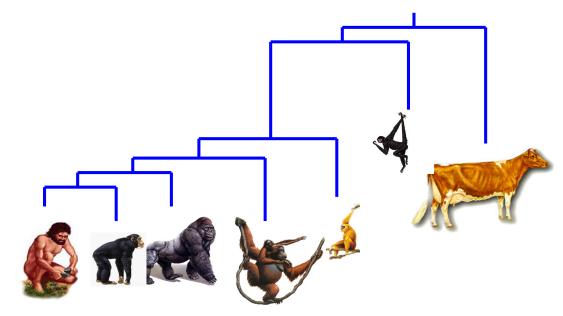
An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33:452-473 (1977)

Heurísticas

- Enlaces mutuos & vecinos compartidos
- Frecuencia de enlaces dentro de una comunidad (cliques & k-cores)
- Cercanía [closeness] de los miembros de una comunidad (n-cliques)
- Frecuencia relativa de los enlaces comunidad (enlaces entre miembros de una comunidad frente a enlaces con "no-miembros")

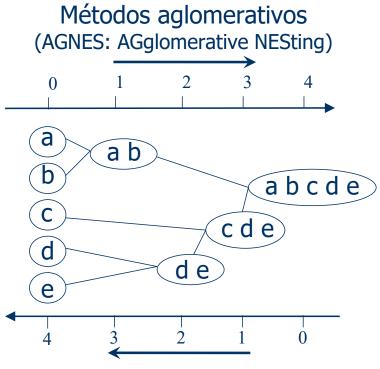
Detección de comunidades





DENDROGRAMA: La similitud entre dos objetos viene dada por la "altura" del nodo común más cercano.

Métodos jerárquicos



Métodos divisivos (DIANA: Divisive ANAlysis)

Métodos jerárquicos aglomerativos

Calcular la matriz de similitud/distancias Inicialización: Cada caso, un cluster Repetir

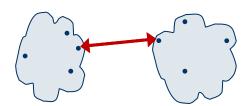
Combinar los dos clusters más cercanos Actualizar la matriz de similitud/distancias hasta que sólo quede un cluster

Estrategia de control irrevocable (greedy):
 Cada vez que se unen dos clusters,
 no se reconsidera otra posible unión.

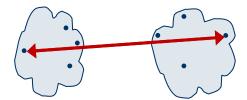
Métodos jerárquicos

¿Cómo se mide la distancia entre clusters?

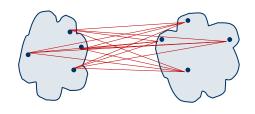
Mínimo [single-link]



Máximo (diámetro) [complete-link]

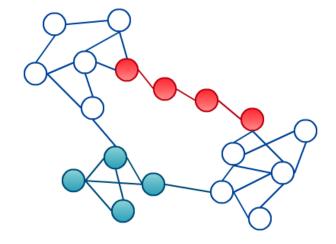


Promedio[averaga-link]

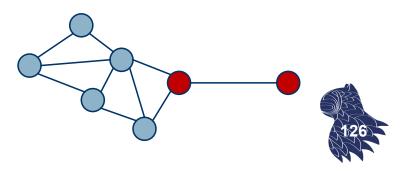


Problemas

Simple-link: Encadenamiento



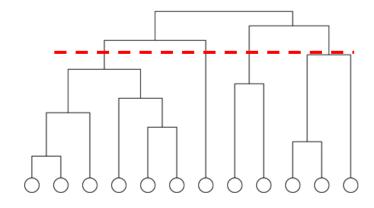
Complete-link: Existencia de outliers



Métodos jerárquicos

Método de Newman & Girvan

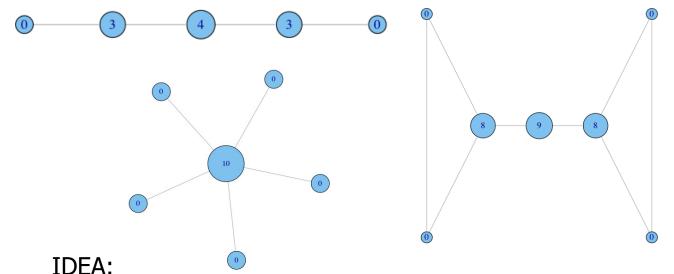
Algoritmo jerárquico divisivo



Michelle Girvan & Mark E.J. Newman: "Community structure in social and biological networks" PNAS **99**(12):7821–7826, 2002 doi:10.1073/pnas.122653799

Método de Newman & Girvan

Betweenness [intermediación]



Número de caminos mínimos que pasan por cada nodo como medida de la importancia de ese nodo.

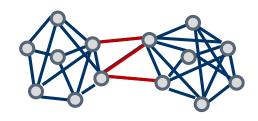
Métodos jerárquicos

La misma idea se puede extender para evaluar la importancia de los enlaces en función del número de caminos mínimos de los que forman parte.

cuando existen varios caminos mínimos ...

Método de Newman & Girvan

Clústering jerárquico utilizando "edge betweenness"



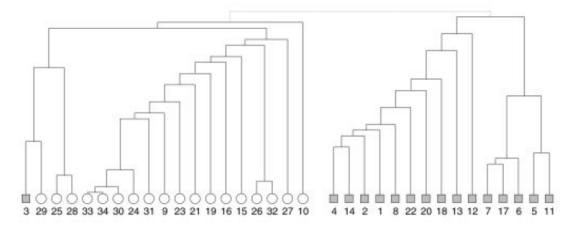
compute the betweenness of all edges
while (betweenness of any edge > threshold)
remove edge with highest betweenness
recalculate betweenness

Ineficiente debido a la necesidad de recalcular el "edge betweenness" de todos los enlaces en cada iteración.

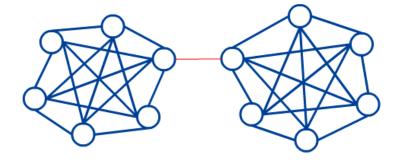
Métodos jerárquicos

Método de Newman & Girvan Red del club de kárate





Método de Radicchi



IDEA:

Una comunidad contiene nodos muy interconectados entre sí, con muchos ciclos; sin embargo, los enlaces que conectan unas comunidades con otras se ven involucrados en menos ciclos.

Métodos jerárquicos

Método de Radicchi Coeficiente de agrupamiento

nbr(n) Vecinos del nodo n en la red.

k Número de vecinos de u, i.e. |nbr(n)|.

max(n) Número máximo de enlaces entre los

vecinos de n, e.g. k*(k-1)/2.

Coeficiente de clustering para el nodo n:

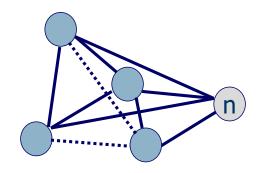
CC(n) = (#enlaces entre vecinos de n) / max(n)

Método de Radicchi Coeficiente de agrupamiento

$$k = 4$$

 $m = 6$

$$CC(n) = 4/6 = 0.66$$



$$0 <= CC(n) <= 1$$

Similitud del conjunto de vecinos de n a un clique.

Métodos jerárquicos

Método de Radicchi

Coeficiente de agrupamiento de los enlaces

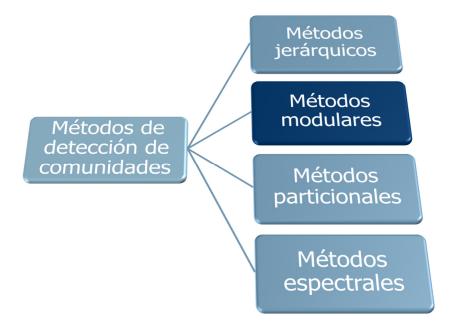
$$C_{ij} = \frac{z_{ij} + 1}{\min(k_i - 1, k_j - 1)}$$

k_i Grado del nodo i

z_{ij} Número de triángulos en los que participan los nodos i y j

135

Más eficiente que el método de Newman & Girvan.



Métodos modulares

ORIGEN

Medida de modularidad Q

IDEA

Uso del término de "modularidad" como cualquier medida numérica que resulte adecuada para determinar y encontrar comunidades.

La detección de comunidades se convierte en un problema de optimización numérica...

Métodos modulares

Modularidad Q

Métrica que compara los enlaces internos de una comunidad frente a los enlaces que connectan la comunidad con el resto de la red.

Vértices en la misma comunidad

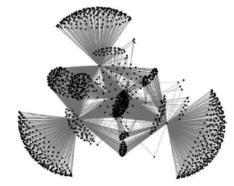
$$Q = \frac{1}{2m} \sum_{vw} \left[A_{vw} - \frac{k_v k_w}{2m} \right] \mathcal{S}(c_v, c_w)$$
Probabilidad de un enlace entre dos vértices adyacencia (propocional a sus grados)

NOTA: En una red completamente aleatoria, Q=0

Métodos modulares

Algoritmo greedy

start with all vertices as isolates do



join clusters with the greatest increase in modularity ($\triangle Q$) while ($\triangle Q > 0$)

Aaron Clauset, Mark E. J. Newman, Cristopher Moore: "Finding community structure in very large networks" Physical Review E 70(6):066111, 2004 doi:10.1103/physreve.70.066111

Métodos modulares

Algoritmo Fast Greedy

FASE 1: Inicialización

Formar pequeños grupos con algún método particional sencillo (tipo K-Means), p.ej. K=n/2

FASE 2: Algoritmo greedy aleatorio

Mientras queden enlaces que mejoren Q: Seleccionar (de forma aleatoria) un enlace que mejore la modularidad de la red y añadirlo.

Métodos modulares

Algoritmo MultiStep Greedy

IDEA

Se selecciona el enlace que más incrementa la modularidad (ΔQ).

Si no están en contacto, se pueden añadir varios enlaces en la misma iteración del algoritmo greedy.

P. Schuetz & A. Caflisch: "Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement" Physical Review E, 77(4):046112, 2008

Métodos modulares

Algoritmo MultiStep Greedy

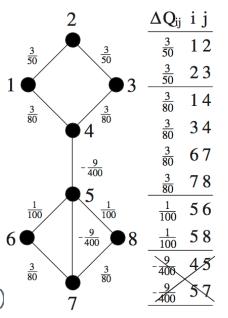
ESTRUCTURA DE DATOS QMatrix Mejoras de modularidad asociadas a cada arista ($\triangle Q_{ij}$).

start with all vertices as isolates do

compute QMatrix

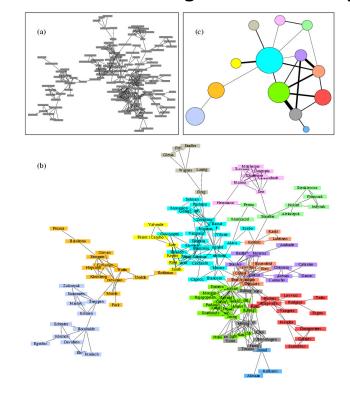
sort QMatrix (descending $\triangle Q$, ascending link)

while ($\triangle Q_{ii} > 0$ for some link to be added)

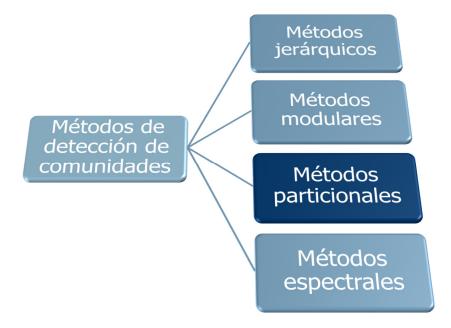


Métodos modulares

Aplicación: Visualización de grandes redes (Gephi)



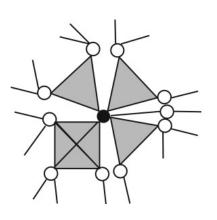
Detección de comunidades



Métodos particionales

Cliques & k-cores

- Cliques (subgrafos completos)
 - La ausencia de un simple enlace descalifica al clique completo
 - Los cliques se solapan.



K-cores (cada nodo, conectado al menos con otros k nodos)

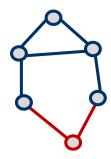
Métodos particionales

n-cliques

Cualquier pareja de nodos a distancia máxima n IDEA: Flujo de información a través de intermediarios.

Problemas:

- Diámetro > n
- n-cliques desconectados



2 – clique diámetro = 3

Camino fuera del 2-clique

Solución: **n-clubs** (subgrafos máximos de diámetro n)

Métodos particionales

Particionamiento sobre un espacio métrico

Técnicas clásicas de clustering basadas en agrupar un conjunto de puntos de un espacio métrico

- Minimum k-Clustering (intenta minimizar el diámetro de los clusters)
- Min-Sum k-Clustering (intenta maximizar la cohesión dentro de los clusters, i.e. la distancia media entre cada par de nodos dentro de cada clúster).
- K-Center (intenta minimizar la distancia máxima del centroide a los demás puntos del clúster).
- K-Means (intenta minimizar la distancia media del centroide a los demás puntos del clúster)

Métodos particionales

Particionamiento sobre un espacio métrico K-Means

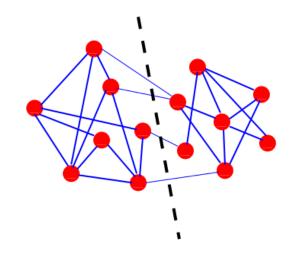
IDEA

- Se transforma la red en un conjunto de puntos de un espacio métrico (p.ej. usando el algoritmo de visualización de redes de Fruchterman-Reingold).
- Se aplica el algoritmo de las k medias.

Métodos particionales

Particionamiento de grafos

Se divide el grafo en k componentes conexas intentando minimizar una **función de corte**.



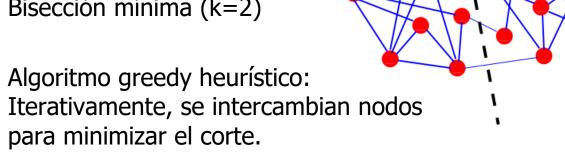
p.ej. Corte mínimo

$$Cut(C_1, C_2, ..., C_k) = \frac{1}{2} \sum_{i=1}^k W(C_i, \overline{C_i}) \qquad W(C_r, C_t) = \sum_{i \in C_r j \in C_t} a_{ij}$$

Métodos particionales

Particionamiento de grafos Algoritmo de Kernighan-Lin

- Bisección mínima (k=2)
- Algoritmo greedy heurístico:



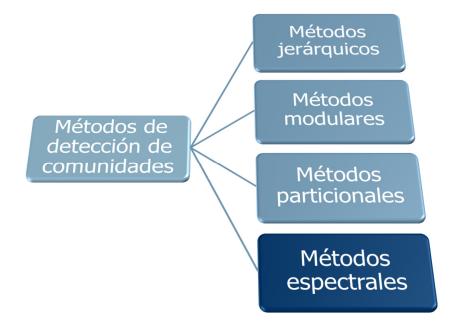
 Selección de parejas de nodos de acuerdo a una función de coste asociado al intercambio.

$$g(i,j) = D_i + D_j - 2w_{ij}$$

$$I_i = \sum_{j \in A} w_{ij}$$

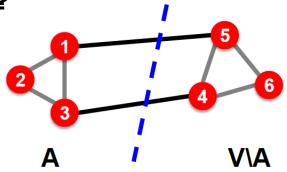
$$E_i = \sum_{j \in B} w_{ij}$$

Detección de comunidades



¿Qué hace bueno a un cluster?

- Se maximiza el número de conexiones dentro del cluster.
- Se minimiza el número de conexiones con otros clusters.



$$cut(A) = 2$$

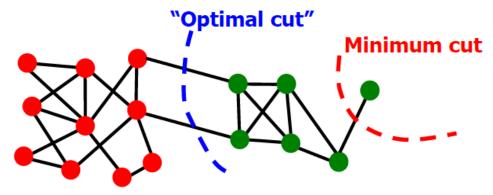
IDFA

Expresar la calidad del cluster como una función del "corte" que separa al cluster del resto de la red.

Métodos espectrales

PROBLEMA

El corte sólo tiene en cuenta conexiones entre clusters.

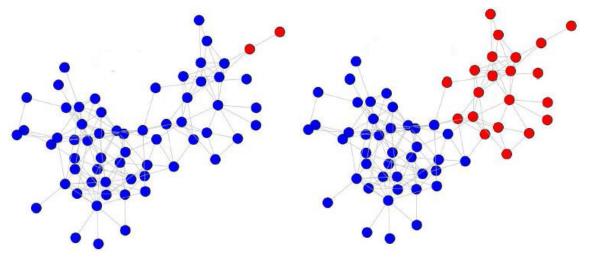


SOLUCIÓN

La **conductancia** (conectividad del grupo con el resto de la red, con respecto a la densidad del grupo) ofrece particiones más balanceadas...

Conductancia

$$\phi(A) = \frac{|\{(i,j) \in E; i \in A, j \notin A\}|}{\min(vol(A), 2m - vol(A))}$$

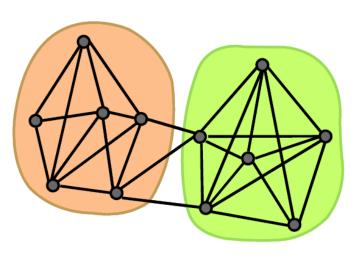


$\phi = 2/4 = 0.5$

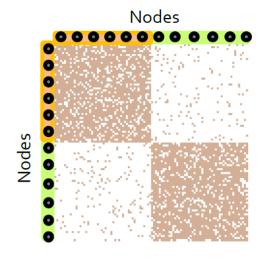
$$\phi = 6/92 = 0.065$$

Métodos espectrales

Encontrar un corte óptimo es un problema NP-duro...



Red

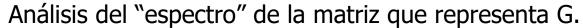


Matriz de adyacencia

- A Matriz de adyacencia del grafo G
- x Vector de valores asociados a cada nodo de G
- Ax Para cada nodo, suma de los valores asociados a sus vecinos.

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

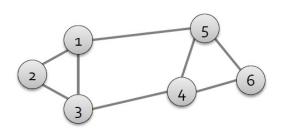
Teoría espectral de grafos: $Ax = \lambda x$



Métodos espectrales

Matriz de adyacencia A

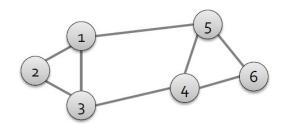
	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0



Matriz simétrica, con eigenvectors reales y ortogonales.

Matriz de grados D

	1	2	3	4	5	6
1	M	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

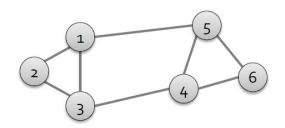


Matriz diagonal

Métodos espectrales

Matriz laplaciana L = D - A

	1	2	M	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2



- Eigenvalues: Números reales no negativos.
- Eigenvectors: Reales y ortogonales.

En un grafo conexo...

Primer eigenvalue Eigenvector trivial $x_1 = (1,...,1)$

$$\lambda_1 = 0$$

Segundo eigenvalue

Segundo eigenvalue (al ser una matriz simétrica)
$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

$$x^{T}L x = \sum_{i,j=1}^{n} L_{ij} x_{i} x_{j} = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) x_{i} x_{j}$$

$$= \sum_{i} D_{ii} x_{i}^{2} - \sum_{(i,j) \in E} 2x_{i} x_{j}$$

$$= \sum_{(i,j) \in E} (x_{i}^{2} + x_{j}^{2} - 2x_{i} x_{j}) = \sum_{(i,j) \in E} (x_{i} - x_{j})^{2}$$

Métodos espectrales

¿Qué más sabemos del segundo eigenvector?

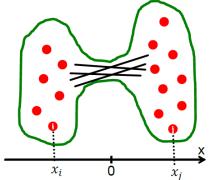
Vector unitario

$$\sum_i x_i^2 = 1$$

Ortogonal al primer eigenvector $\sum_i x_i \cdot 1 = \sum_i x_i = 0$

$$\sum_i x_i \cdot \mathbf{1} = \sum_i x_i = \mathbf{0}$$

$$\lambda_2 = \min_{\substack{\text{All labelings} \\ \text{of nodes } i \text{ so} \\ \text{that } \sum x_i = 0}} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2}$$



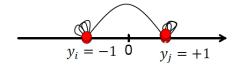
Queremos minimizar, por lo que asignaremos los valores x_i de forma que pocas aristas crucen 0 (queremos que x_i y x_i se compensen)

PROBLEMA DE OPTIMIZACIÓN

$$y_i = \begin{cases} +1 & if \ i \in A \\ -1 & if \ i \in B \end{cases}$$

Minimización del corte

$$\underset{y \in [-1,+1]^n}{\operatorname{arg\,min}} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2$$



Relajación del problema: Teorema de Rayleigh

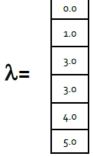
$$\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

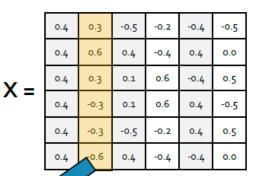
Métodos espectrales

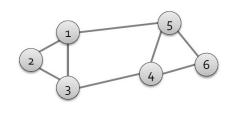
Bisección espectral (EIG1)

- Basado en el autovector de Fiedler F
 (el correspondiente al segundo autovalor
 más pequeño de la matriz laplaciana).
- Para cada valor x_i correspondiente al nodo n_i , si $x_i > \sigma$ lo asociamos al primer cluster; si no, al segundo.

L. Hagen & A.B. Kahng: "New spectral methods for ratio cut partitioning and clustering". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074-1085, 1992.







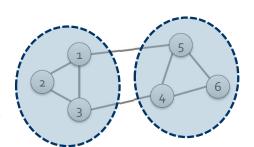
1	0.3	
2	0.6	
3	0.3	
4	-0.3	
5	-0.3	
6	-0.6	

Cluster A: Positive points

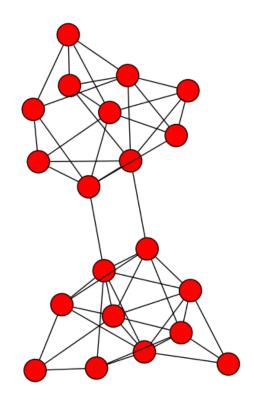
Cluster B: Negative points

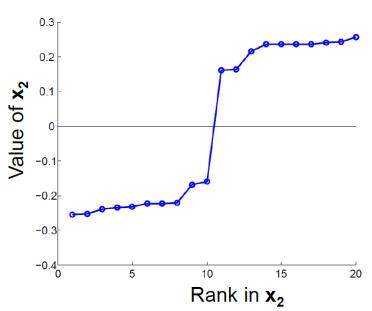
1	0.3
2	0.6
3	0.3

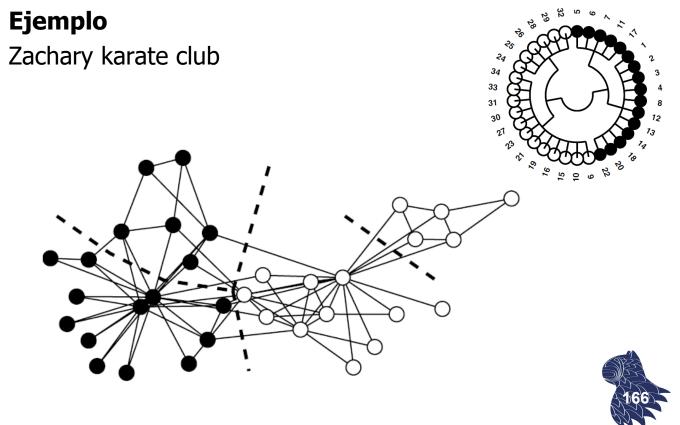
4	-0.3	
5	-0.3	
6	-0.6	



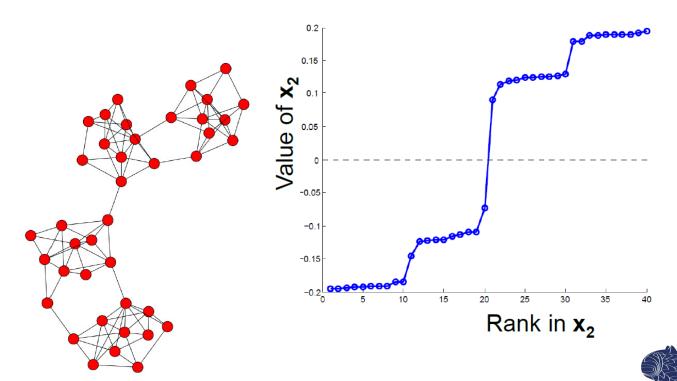
Métodos espectrales

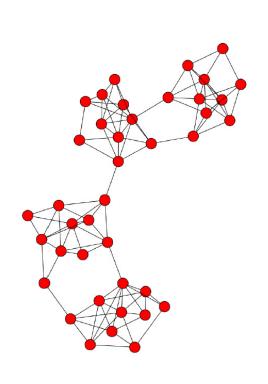


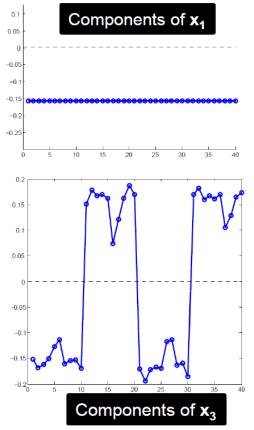




Métodos espectrales







Métodos espectrales

Laplaciano de un grafo

L = D - A

PROPIEDADES

- El número de autovalores de L iguales a 0 coincide con el número de componentes conexas del grafo.
- Si tenemos k grupos bien definidos en nuestra red, los k primeros autovalores serán cercanos a 0 y sus autovectores asociados nos ayudarán a diferenciar claramente los grupos en un espacio k-dimensional.

Laplaciano de un grafo

Estimación del número de clusters

Si tenemos k particiones bien definidas, los primeros k autovalores de la matriz laplaciana serán cercanos a 0, por lo que es de esperar que el autovalor k+1 difiera bastante del autovalor k.

NOTA: Para que este método funcione medianamente bien, la red debe tener comunidades claramente definidas.

Métodos espectrales

Laplaciano de un grafo

Normalización

Normalización simétrica

$$L_{sym} = D^{-1/2} L D^{-1/2}$$

Normalización asimétrica (por caminos aleatorios)

$$L_{rw} = D^{-1} L$$

IDEA GENERAL

- Transformar el conjunto de nodos en un conjunto de puntos en un espacio métrico cuyas coordenadas se corresponderán a los k vectores propios más relevantes de la matriz laplaciana del grafo.
- 2. Agrupar dichos puntos mediante alguna técnica de particionamiento en el espacio métrico.

U. von Luxburg:

"A tutorial on spectral clustering" Statistics and Computing, 17(4):395-416, 2007.

Métodos espectrales

Algoritmo genérico

- Calculamos la matriz laplaciana L de nuestra red (normalizada o no).
- 2. Calculamos los autovalores y autovectores de L.
- 3. Formamos una matriz U con los k primeros autovectores de L como columnas.
- 4. Interpretamos las filas de U como vectores de un espacio métrico k-dimensional.
- 5. Agrupamos los vectores usando cualquier técnica de particionamiento en espacios métricos (p.ej. k-means).

UKMeans

- 1. Calculamos la matriz laplaciana L sin normalizar.
- Calculamos autovalores y autovectores de L.
- Formamos una matriz U con los k primeros autovectores de L como columnas.
- 4. Interpretamos las filas de U como vectores en un espacio métrico k-dimensional.
- 5. Agrupamos los vectores usando K-Means.

Métodos espectrales

Algoritmo NJW (a.k.a. KNSC1)

- 1. Calculamos la matriz laplaciana normalizada simétrica.
- 2. Calculamos autovalores y autovectores de L_{sym}.
- 3. Formamos una matriz U con los k primeros autovectores de L como columnas.
- 4. Realizamos una nueva normalización U' de U.
- 5. Interpretamos las filas de U' como vectores en un espacio métrico k-dimensional.
- Agrupamos los vectores de U' usando K-Means.

A.Y. Ng, M.I. Jordan & Y. Weiss: "On spectral clustering: Analysis and an algorithm". Advances in Neural Information Processing Systems, 2:849-856, 2002.

Detección de comunidades

Limitaciones de los métodos descritos

- Escalabilidad: Identificación de grandes comunidades.
- Existencia de solapamiento entre comunidades.
- Modelos poco realistas
 (los algoritmos realizan suposiciones demasiado simplificadas sobre las comunidades de una red, por lo que no funcionan bien con conjuntos de datos reales).
- Técnicas heurísticas sin garantías
 (incluso para los algoritmos que funcionan bien en la
 práctica, no existen garantías sobre la calidad de sus
 resultados).

Evaluación de resultados

Métricas de evaluación no supervisada

Evaluación global

Cohesión

$$\mathrm{cohesi\acute{o}n}(C_i) = \sum_{u,v \in C_i} \mathrm{proximidad}(u,v)$$

Separación

$$\operatorname{separación} \left(C_i, C_j \right) = \sum_{\substack{u \in C_i \\ v \in C_j}} \operatorname{proximidad}(u, v)$$

Métricas de evaluación no supervisada

Evaluación individual de nodos y clusters

Coeficiente de silueta

a(v)

Distancia media del nodo a los demás nodos de su cluster.

b(v)

Distancia mínima entre el nodo y un cluster al que no pertenece.

$$s(v_i) = \frac{b(v_i) - a(v_i)}{\max(a(v_i), b(v_i))}$$

$$s(C_j) = \frac{1}{m} \sum_{i=1}^m s(v_i)$$

$$s(G) = \frac{1}{c} \sum_{j=1}^{c} s(C_j)$$

Evaluación de resultados

Métricas de evaluación no supervisada

Evaluación individual de nodos y clusters

Conductancia

$$\varphi(C_i) = \frac{\operatorname{cut}(C_i)}{\min(\operatorname{vol}(C_i), \operatorname{vol}(\overline{C_i}))}$$

$$\varphi(G) = \min(\varphi(C_i)), C_i \subseteq V$$

... intra-cluster

$$\alpha(C) = \min \varphi(G[C_i]), i \in \{1, ..., k\}$$

... inter-cluster

$$\sigma(C) = 1 - \max \varphi(C_i), \ i \in \{1, \dots, k\}$$

Métricas de evaluación no supervisada

Evaluación individual de nodos y clusters

Cobertura

$$cov(C_i) = \frac{w(C_i)}{w(G)}$$

Rendimiento

$$perf(C) = 1 - \frac{2m(1 - 2cov(C)) + \sum_{i=1}^{k} |C_i|(|C_i| - 1)}{n(n-1)}$$

Evaluación de resultados

Modularidad Q

Métrica de evaluación no supervisada que compara los enlaces internos de una comunidad frente a los enlaces que connectan la comunidad con el resto de la red.

 $Q = \frac{1}{2m} \sum_{vw} \begin{bmatrix} A_{vw} - \frac{k_v k_w}{2m} \end{bmatrix} \delta(c_v, c_w)$ Probabilidad de un enlace entre dos vértices adyacencia (propocional a sus grados)

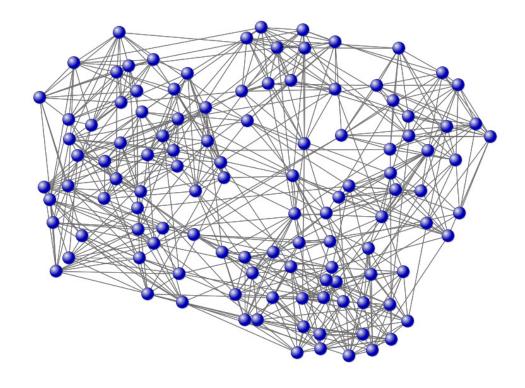
NOTA: En una red completamente aleatoria, Q=0

Métricas de evaluación no supervisada

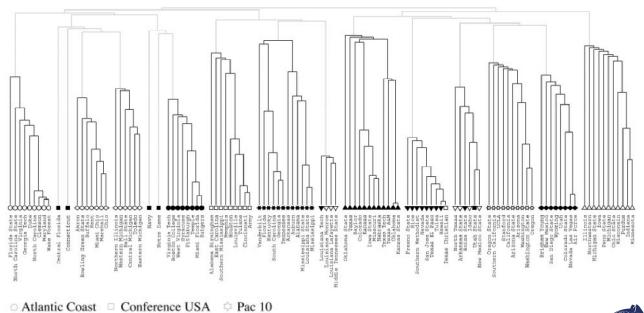
Enfoque	Medida	Ref.	Rango	Características
Análisis Global	Cohesión	[79]	[0,∞]	Mide las distancias entre nodos dentro de un cluster, se buscan valores pequeños, varía dependiendo de la medida de proximidad.
	Separación	[79]	[0,∞]	Mide las distancias de los nodos del <i>cluster</i> con respecto a aquellos que no pertenece, se busca el máximo posible, varía dependiendo de la medida de proximidad.
Análisis individual	Coeficiente de silueta	[68]	[-1,1]	Adecuada para comunidades altamente conectadas. Alta complejidad y fallos con nodos hoja.
	Conductancia	[32]	[0,1]	Medición de cuellos de botella, adecuado para <i>clusters</i> de gran tamaño; fallos en la evaluación de <i>clusters</i> con pocos nodos, pequeños y/o muy grandes.
	Cobertura	[5]	[0,1]	Peso del <i>cluster</i> , basado en los cortes mínimos; fallos en la evaluación de <i>clusters</i> con pocos nodos, pequeños y/o muy grandes.
	Rendimiento	[5]	[0,1]	Número de nodos adyacentes, densidad; falla en redes de gran tamaño con numero alto de <i>clusters</i> .
	Coeficiente de agrupamiento	[64]	[0,1]	Búsqueda de estructuras conexas (triángulos).
	Modularidad	[52]	[0,1]	Comparación del cluster con estructura aleatoria.

Evaluación de resultados

Red de fútbol americano (115 nodos, 613 enlaces)



Red de fútbol americano (115 nodos, 613 enlaces)



- Big East
- ▶ Big 10
- ▶ Big 12
- IA Independents
- Mid American
- ◆ Mountain West ■ Western Athletic

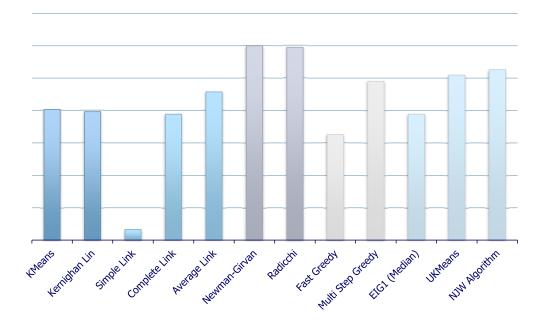
* SEC

Sunbelt

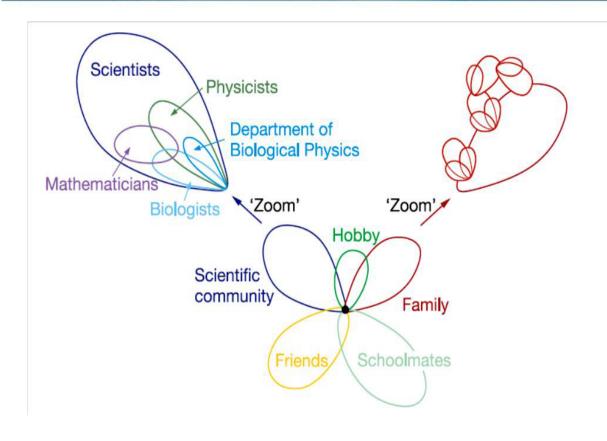
Evaluación de resultados

Red fútbol americano (115 nodos, 613 enlaces)

Modularidad

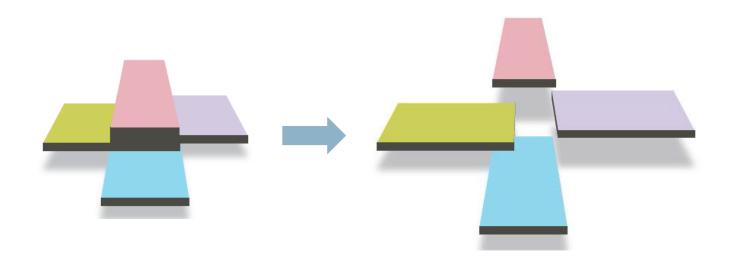


Comunidades solapadas



Comunidades solapadas

Comunidades en una red real



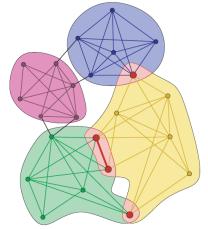
Leskovec, Rajamaran & Ullman: "Mining of Massive Datasets" Stanford University

CPM

Clique Percolation Method

[Palla et al., Nature'2005]

 Si de un k-clique eliminamos un enlace, se obtienen dos (k-1)-cliques solapados que comparten k-2 nodos.



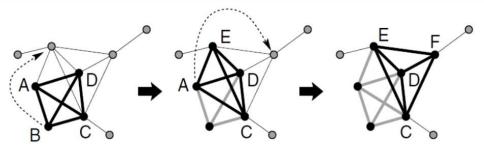
- La unión de estos conjuntos de nodos solapados forma una cadena de cliques.
- IDEA (similar a Radicchi): Las aristas existentes dentro de una comunidad tienden a formar cliques; las arista que conectan nodos de distintas comunidades, no.

CPM

Clique Percolation Method

[Palla et al., Nature'2005]

ALGORITMO
 Encontrar cliques adyacentes
 para formar una cadena de cliques
 (es posible rotar/pivotar los k-cliques a lo largo de la cadena reemplazando un solo nodo).



CPM

Clique Percolation Method

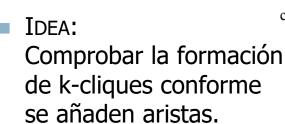
[Palla et al., Nature'2005]

- IMPLEMENTACIÓN
 Matriz de adyacencia de k-cliques
 (número de nodos compartidos por cada par de cliques) filtrada (a 0 para valores
 <= k-1), a partir de la cual se determinan fácilmente las comunidades solapadas (conectividad).
- CPM es de orden exponencial (búsqueda de cliques), si bien CFinder (<u>http://www.cfinder.org/</u>) ofrece una versión aproximada más eficiente, O(n_{cliques}²)

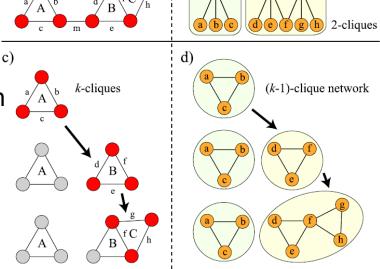
CPM Secuencial

3-cliques

[Kumpula et al., Physical Review E 2008]



 Algoritmo escalable, prácticamente lineal.



b)

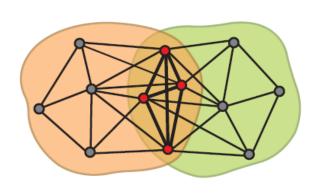
Alternativas

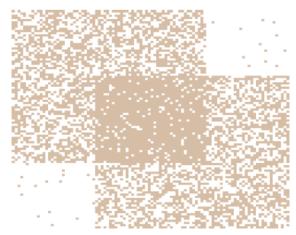
- CPMw para redes con pesos [Farkas, NJP'2007]
- "Maximal cliques" como núcleos de comunidades que luego se fusionan. [Shang et al., CPL'2010]
- MOSES basado en modelos estadísticos [McDaid & Hurley, ASONAM'2010]
- Algoritmo de fuzzy clustering basado en una relación difusa [Sun et al., Information Sciences 2011]
- CONA en dos etapas: primero se buscan comunidades no solapadas y luego se buscan vínculos entre ellas [Wu et al., Physica A 2012]

BigCLAM

IDEA:

La densidad de las aristas en las zonas solapadas es mayor...



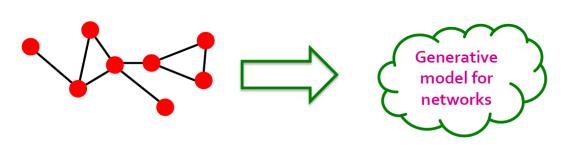


Yang & Leskovec: "Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach". ACM International Conference on Web Search and Data Mining (WSDM), 2013.

PLAN

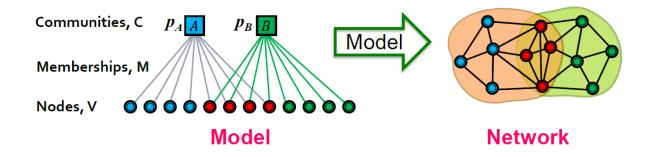
Dado un modelo, podemos generar una red

Dada una red, podemos encontrar el "mejor" modelo



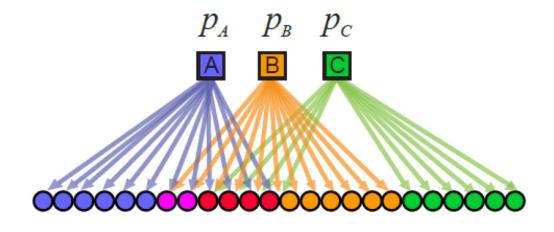
BigCLAM

AGM [Affiliation Graph Model]



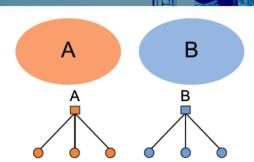
- Generación de enlaces: Para cada par de nodos de una misma comunidad A, creamos un enlace entre ellos con probabilidad p_A.
- Modelo cuyos parámetros estimaremos para detectar las comunidades.

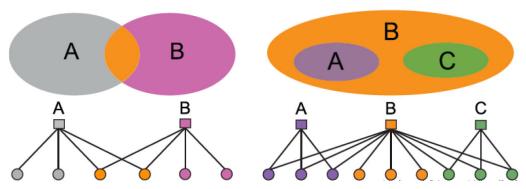
AGM [Affiliation Graph Model]



$$P(u, v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)$$
If u, v share no communities: $P(u, v) = \varepsilon$

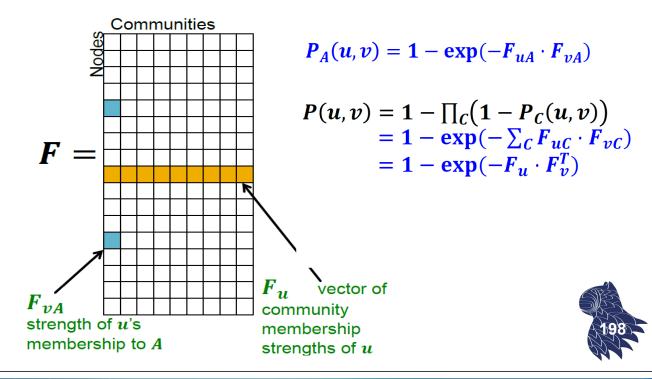
BigCLAM





Modelo versátil: Comunidades no solapadas, solapadas y anidadas

Parámetros del modelo F_{nA} : Fuerza con la que un nodo n pertenece a una comunidad A.



BigCLAM

PROBLEMA

Dada una red, estimar F

Maximizar likelihood P(G|F)

$$arg\ max_F\ \prod_{(u,v)\in E}p(u,v)\prod_{(u,v)\notin E}(1-p(u,v))$$

Log-likelihood I(F) = log P(G|F)

$$l(F) = \sum_{(u,v)\in E} \log(1 - \exp(-F_u F_v^T)) - \sum_{(u,v)\notin E} F_u F_v^T$$

BigCLAM 1.0

ALGORITMO

Fila de F

$$l(F_u) = \sum_{v \in \mathcal{N}(u)} \log(1 - \exp(-F_u F_v^T)) - \sum_{v \notin \mathcal{N}(u)} F_u F_v^T$$

Gradiente de una fila de F

$$\nabla l(F_u) = \sum_{v \in \mathcal{N}(u)} F_v \frac{\exp(-F_u F_v^T)}{1 - \exp(-F_u F_v^T)} - \sum_{v \notin \mathcal{N}(u)} F_v$$

 Maximización: Gradiente ascendente coordinado Algoritmo iterativo

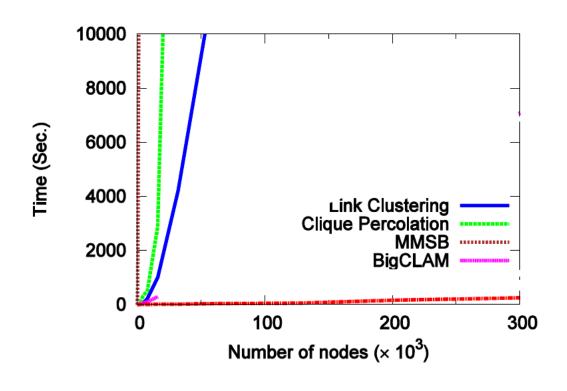
$$F_u \leftarrow F_u + \eta \nabla l(F_u)$$

- Problema: Calcular el gradiente ∇l(F_u) requiere tiempo lineal con respecto al tamaño de la red.
- Solución:

$$\sum_{v \notin \mathcal{N}(u)} F_v = \left(\sum_v F_v - F_u - \sum_{v \in \mathcal{N}(u)} F_v\right)$$

Podemos precalcular $\Sigma_v F_v$ para obtener en tiempo lineal con respecto al grado de los nodos |N(u)|

Resultado: Algoritmo escalable

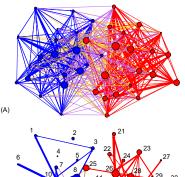


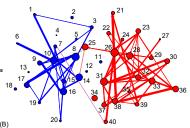
Aplicaciones

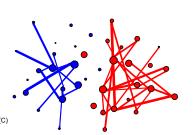
- A) All citations between blogs.
- B) Blogs with at least 5 citations in both directions.
- c) Edges further limited to those exceeding 25 combined citations.

only 15% of the citations bridge communities

L. A. Adamic & N. Glance: The political blogosphere and the 2004 US Election LinkKDD'2005





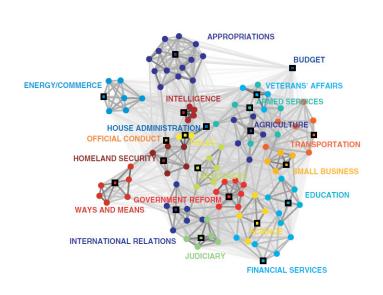


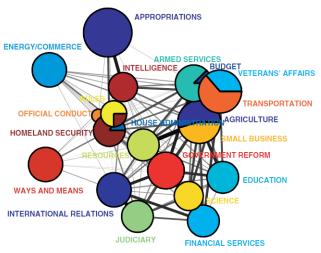
- B Daily Kos
 American Prosp
 Dischaton
 Manual Comments
- 13 Politi cal Wire
- 14 Talking Points Memo 15 Matthew Yglesias 16 Washington Monthly
- 17 MyDD 18 Juan Cole 19 Left Coaster 20 Bradford DeLong
- 21 JawaReport
- 21 Jawarkeport 22 Voka Pundit 23 Roger LSimon 24 Tim Blair 25 Andrew Sulliva 26 Instapundit 27 Blogsfor Bush

- 33 INDClournal 34 Real Clear Politics
- 34 Real Clear Politics 35 Winds of Change 36 Allahpundit 37 Michelle Malkin 38 WizBang 39 Dean's World

Comités y subcomités

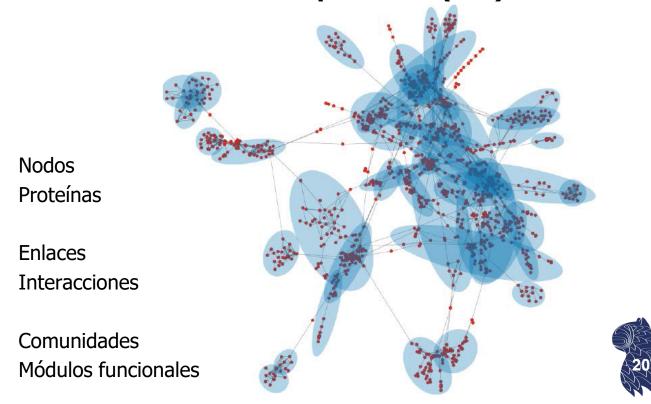
U.S. House of Representatives 2003-2004



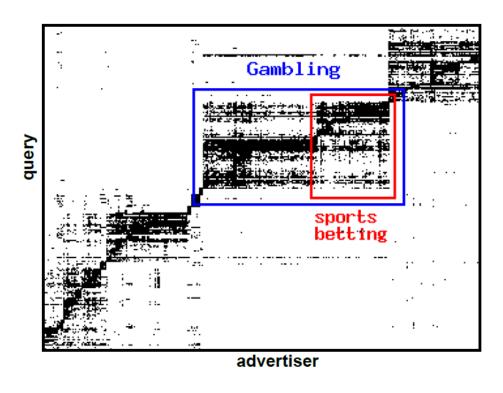


Aplicaciones

Redes de interacción de proteínas (PPI)

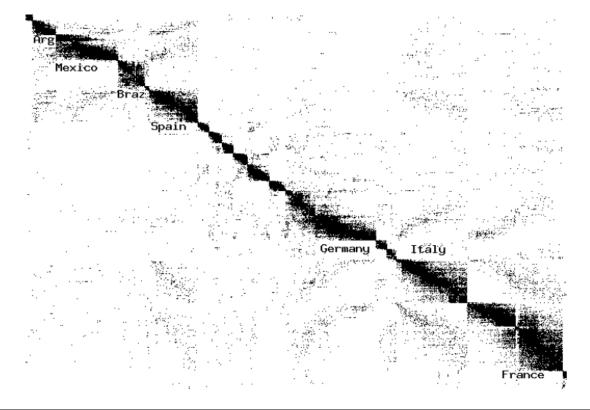


Query-advertiser graphs (micromarkets)

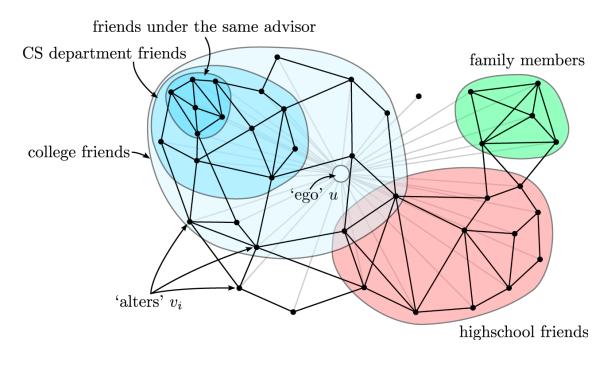


Aplicaciones

Movie-actor network

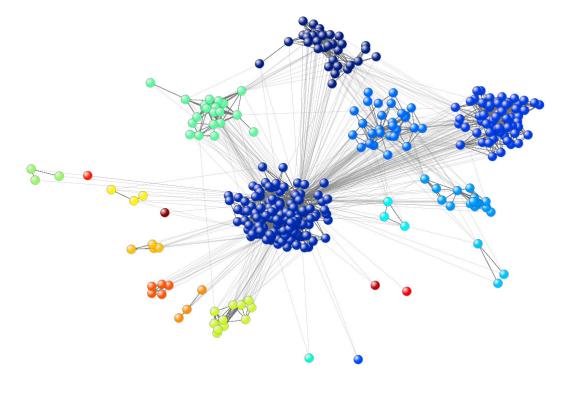


Círculos sociales

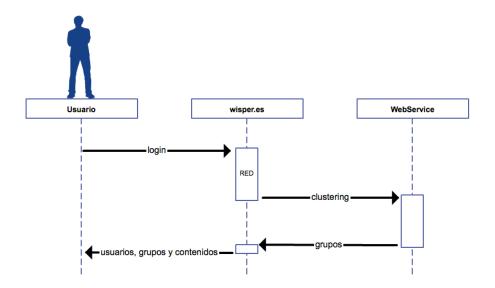


Aplicaciones

Comunidades en una red de amigos en Facebook



wisper.es



Aplicaciones

wisper.es

wisper.es

Agradecimientos

Julio Omar Palacio Niño

Detección de comunidades en redes:

Algoritmos y aplicaciones

MSc Thesis, September 2013

Department of Computer Science and Artificial Intelligence University of Granada (Spain)

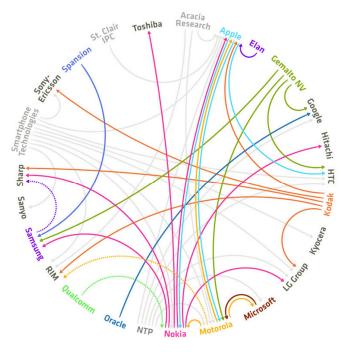
Aarón Rosas Rodríguez & Francisco Javier Gijón Moleón

Algoritmos paralelos para la detección de comunidades en redes

Proyecto de Fin de Carrera, septiembre de 2014 ETSIIT, Universidad de Granada

Predicción de enlaces

LAWSUITS IN THE MOBILE BUSINESS



EACH LINE IS A LAWSUIT; ARROWS POINT TO THE DEFENDANTS
 DOTTED LINES REPRESENT RECENTLY CONCLUDED LAWSUITS
 LIGHT GRAY INDICATES PATENT HOLDING COMPANIES

Predicción de enlaces

El problema

Dada una instantánea de una red en el instante de tiempo t, G(t) = (V(t), E(t)), ¿cuál será el conjunto de enlaces que se formará en el instante $t+\Delta$?

$$E(t) \rightarrow E(t+\Delta)$$
?

Predicción de enlaces

Aplicaciones

- Sistemas de recomendación
 - "Collaborative filtering" (vs. content-based filtering)
 - Redes sociales
- Integración de datos
 - Resolución de entidades (a.k.a. record linkage)
- Bioinformática
 - Predicción de interacciones entre proteínas

Evaluación: Métricas

Matriz de confusión

(confusion matrix)

10/-14/10/			770
		Pred	icción
		C_P	C_N
Clase	C _P	TP: True positive	FN: False negative
e real	C_N	FP: False positive	TN: True negative

Precisión del clasificador

accuracy = (TP+TN)/(TP+TN+FP+FN)

Evaluación: Métricas

Medidas "cost-sensitive"

		Predicción		
		C_P	C_N	
Clase	C _P	TP: True positive	FN: False negative	
real	C _N	FP: False positive	TN: True negative	

precision = TP/(TP+FP)

True positive recognition rate

recall = sensitivity = hit-rate = TP/P = TP/(TP+FN)

True negative recognition rate

specificity = TN/N = TN/(TN+FP)

Evaluación: Métricas

Medidas "cost-sensitive"

		Predicción	
		C_P	C_N
Clase real		TP: True positive	FN: False negative
		FP: False positive	TN: True negative

F-score

Media armónica de precision y recall:

F = 2*precision*recall / (precision+recall)

F = 2TP / (2TP+FP+FN)

Evaluación: Métricas

Medidas "cost-sensitive"

		Predicción		
		C_P	C_N	
Clase real		TP: True positive	FN: False negative	
		FP: False positive	TN: True negative	

F-score (β)

Media armónica ponderada entre precision y recall:

F =
$$(1+ \beta^2)*precision*recall$$

/ $(\beta^2*precision+recall)$

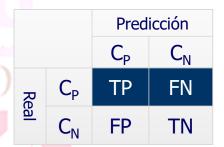
Evaluación: Métricas

Medidas "cost-sensitive"

Accuracy

		icción	
		C_P	C_N
Real	C_P	TP	FN
<u>a</u>	C_N	FP	TN

Precision



Recall

		Predicción	
		C_P	C_N
R	C_P	TP	FN
Real	C_N	FP	TN

F-measure

Evaluación: Métricas

En el caso de la predicción de enlaces...

Normalmente, sólo nos interesarán aquellos enlaces candidatos que es más probable que se formen [top k]:

La precisión [precision] nos indica el porcentaje de acierto dentro de los k enlaces más probables:

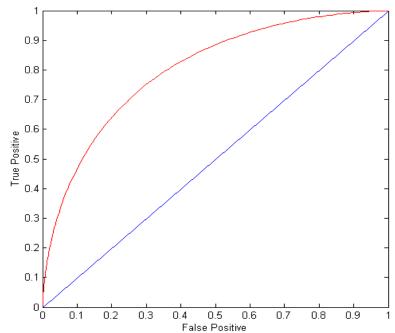
$$precision(k) = TP(k) / k$$

Accuracy, recall (sensitivity), specificity y F-score
 no aportan información adicional en este contexto.

Evaluación: Comparación

Curvas ROC

Receiver
Operating
Characteristics



TPR = TP/(TP+FN) Eje vertical: "true positive rate"

FPR = FP/(FP+TN) Eje horizontal: "false positive rate"

Evaluación: Comparación

Curvas ROC

- Desarrolladas en los años 50 para analizar señales con ruido: caracterizar el compromiso entre aciertos y falsas alarmas.
- Permiten comparar visualmente distintos modelos de clasificación.
- **AUC**: El área que queda bajo la curva es una medida de la precisión [accuracy] del clasificador:
 - Cuanto más cerca estemos de la diagonal (área cercana a 0.5), menos preciso será el modelo.
 - Un modelo "perfecto" tendrá área 1.

Evaluación: Comparación

Curvas ROC

Cálculo del área bajo la curva AUC

Se puede aproximar muestreando pares de enlaces del conjunto de validación y enlaces no existentes:

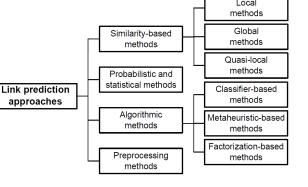
$$AUC = (n' + 0.5n'') / n$$

donde **n** es el número pares muestreados, **n'** es el número de pares en los que enlace del conjunto de validación recibió una probabilidad de existencia mayor que el enlace no existente y **n''** es el número de enlaces en los que hubo un empate.

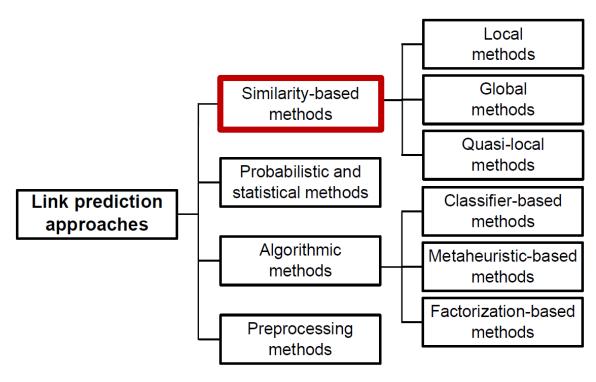
Predicción de enlaces

Métodos de predicción de enlaces

- Métodos basados en similitud
 - Métodos locales
 - Métodos globales
 - Métodos cuasi-locales
- Métodos probabilísticos
- Métodos algorítmicos
 - Métodos basados en clasificadores
 - Métodos basados en metaheurísticas
 - Métodos basados en factorizaciones



Métodos basados en similitud



Hipótesis

Los nodos de una red tienden a formar enlaces con otros nodos similares

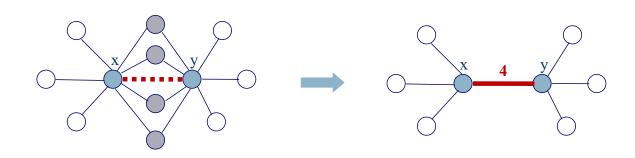
Idea básica

Si definimos una función de similitud s(x,y) entre parejas de nodos, podemos utilizar dicha función para establecer un ranking que nos indique qué enlaces es más probable que se formen en el futuro.

Métodos basados en similitud

Métodos locales

Dos nodos se consideran similares si tienen vecinos compartidos...



Métodos locales (1/5)

CN [Common Neighbors]

$$s(x,y) = |\Gamma_x \cap \Gamma_y|$$

AA [Adamic-Adar index]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{1}{\log |\Gamma_z|}$$

RA [Resource Allocation index]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{1}{|\Gamma_z|}$$

Métodos basados en similitud

Métodos locales (2/5)

 RA-CNI [Resource Allocation index based on Common Neighbor Interaction]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{1}{|\Gamma_z|} + \sum_{e_{i,j} \in E, |\Gamma_i| < |\Gamma_j|, i \in \Gamma_x, j \in \Gamma_y} \left(\frac{1}{|\Gamma_i|} - \frac{1}{|\Gamma_j|} \right)$$

■ **PA** [Preferential Attachment index]: Modelo de Barabasi- Albert

$$s(x,y) = |\Gamma_x||\Gamma_y|$$

J [Jaccard index]

$$s(x,y) = \frac{|\Gamma_x \cap \Gamma_y|}{|\Gamma_x \cup \Gamma_y|}$$

Métodos locales (3/5)

■ **SA** [Salton index] = Cosine similarity

$$s(x,y) = \frac{|\Gamma_x \cap \Gamma_y|}{\sqrt{|\Gamma_x||\Gamma_y|}}$$

SO [Sorensen index]

$$s(x,y) = \frac{2|\Gamma_x \cap \Gamma_y|}{|\Gamma_x| + |\Gamma_y|}$$

LLHN [Local Leicht-Holme-Newman index]

$$s(x,y) = \frac{|\Gamma_x \cap \Gamma_y|}{|\Gamma_x||\Gamma_y|}$$

Métodos basados en similitud

Métodos locales (4/5)

■ **HPI** [Hub-Promoted Index]
$$s(x,y) = \frac{|\Gamma_x \cap \Gamma_y|}{\min(|\Gamma_x|, |\Gamma_y|)}$$

■ **HDI** [Hub-Depressed Index]
$$s(x,y) = \frac{|\Gamma_x \cap \Gamma_y|}{\max(|\Gamma_x|, |\Gamma_y|)}$$

■ **IA** [Individual Attraction index]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{|e_{z,\Gamma_x \cap \Gamma_y}| + 2}{|\Gamma_z|}$$

SIA [Simple IA]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{|e_{\Gamma_x \cap \Gamma_y}| + 2}{|\Gamma_z| |\Gamma_x \cap \Gamma_y|}$$

Métodos locales (5/5)

MI [Mutual Information]

$$s(x,y) = -I(e_{x,y}|\Gamma_x \cap \Gamma_y) = -I(e_{x,y}) + \sum_{z \in \Gamma_x \cap \Gamma_y} I(e_{x,y};z)$$

LNB [Local Naive Bayes]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} f(z) \log (oR_z)$$

■ CAR [CAR-based indices]: Local communities

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} 1 + \frac{|\Gamma_x \cap \Gamma_y \cap \Gamma_z|}{2}$$

Métodos basados en similitud

Métodos locales

VENTAJAS

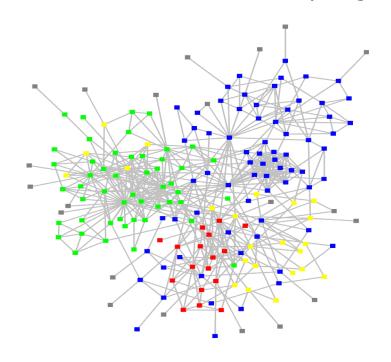
- Eficientes
- Paralelizables

DESVENTAJAS

- Sólo consideran información local (de hecho, sólo se calcula la similitud entre pares de nodos con vecinos compartidos, i.e. a distancia 2)
 - p.ej. Redes de mundo pequeño [small-world networks]

Métodos globales

Se utiliza toda la información de la topología de la red



Métodos basados en similitud

Métodos globales: Caminos en la red

NSP [Negated Shortest Path]

$$s(x,y) = -|shortest\ path_{x,y}|$$

KI [Katz Index]

$$s(x,y) = \sum_{l=1}^{\infty} \beta^l |paths_{x,y}^l| = \sum_{l=1}^{\infty} \beta^l (A^l)_{x,y}$$

GLHN [Global Leicht-Holme-Newman index]

$$S = I + \sum_{l=1}^{\infty} \phi^l A^l$$

Métodos globales: Caminos aleatorios

RW [Random Walks]

$$\overrightarrow{p^x}(t) = M^T \overrightarrow{p^x}(t-1)$$

RWR [Random Walks with Restart]

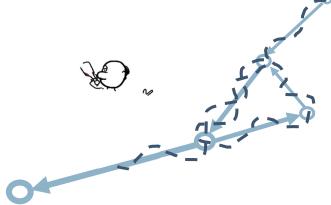
$$\overrightarrow{p^x}(t) = \alpha M^T \overrightarrow{p^x}(t-1) + (1-\alpha)s^x$$

- **FP** [Flow Propagation]: Usando la matriz Laplaciana en vez de la matriz de adyacencia (L=D-A).
- MERW [Maximal Entropy Random Walk], teniendo en cuenta la tendencia a conectarse con nodos centrales

Métodos basados en similitud

Métodos globales: Caminos aleatorios

Relación con PageRank



Lada Adamic, "Social Network Analysis" https://www.coursera.org/course/sna

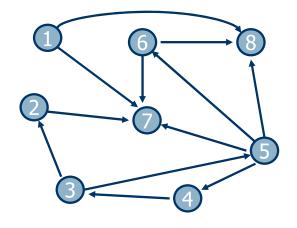
El PageRank de Google mide la importancia de un nodo en la red en proporción a la fracción de tiempo que un (caminante aleatorio pasaría en él.

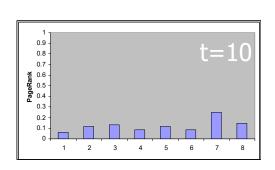
Relación con PageRank

Problema: Atrapado en la red

Solución: Teletransporte

Salto aleatorio con una probabilidad dada.





Métodos basados en similitud

Métodos globales

- SimRank (cómo de pronto se encontrarán dos caminantes que empiezan en nodos diferentes y siguen un camino aleatorio).
- PLM [Pseudoinverse of the Laplacian Matrix]

$$s(x,y) = \frac{L_{x,y}^+}{\sqrt{L_{x,x}^+ L_{y,y}^+}}$$

Métodos globales

ACT [Average Commute Time]: Número medio de pasos que hay que dar para llegar de x a y.

$$n(x,y) = |E|(L_{x,x}^+ + L_{y,y}^+ - 2L_{x,y}^+)$$
$$s(x,y) = \frac{1}{L_{x,x}^+ + L_{y,y}^+ - 2L_{x,y}^+}$$

RFK [Random Forest Kernel]

$$S = (I + L)^{-1}$$

■ **BI** [Blondel Index]

$$S(t) = \frac{AS(t-1)A^T + A^TS(t-1)A}{\|AS(t-1)A^T + A^TS(t-1)A\|_F}$$

Métodos basados en similitud

Métodos globales

VENTAJAS

- Utilizan toda la información topológica de la red
- No están limitados a medir similitudes entre nodos que tengan vecinos compartidos (i.e. a distancia 2)

DESVENTAJAS

- Complejidad computacional.
- Paralelización compleja.

Métodos cuasi-locales

Balance entre medidas locales y globales

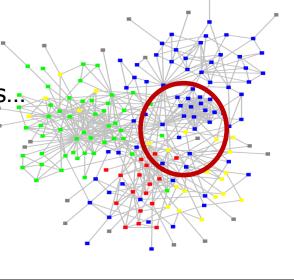
- Casi tan eficientes como los métodos locales.
- Consideran más información topológica que los métodos locales...

Métodos basados en similitud

Métodos cuasi-locales

Equilibro intermedio entre métodos locales y globales

- Casi tan eficientes como los métodos locales.
- Consideran más información topológica que los métodos locales...



Métodos cuasi-locales

LPI [Local Path Index]: Extensión del índice de Katz

$$S = \sum_{i=2}^{l} \beta^{i-2} A^i$$

LRW [Local Random Walks]

$$s^{x,y}(t) = \frac{|\Gamma_x|}{2|E|} \overrightarrow{p_y^x}(t) + \frac{|\Gamma_y|}{2|E|} \overrightarrow{p_x^y}(t)$$

SRW [Superposed Random Walks]

$$s^{x,y}(t) = \sum_{i=1}^{t} \left(\frac{|\Gamma_x|}{2|E|} \overrightarrow{p_y^x}(i) + \frac{|\Gamma_y|}{2|E|} \overrightarrow{p_x^y}(i) \right)$$

Métodos basados en similitud

Métodos cuasi-locales

 ORA-CNI [3rd Order Resource Allocation based on Common Neighbor Interactions]

$$s(x,y) = \sum_{z \in \Gamma_x \cap \Gamma_y} \frac{1}{|\Gamma_z|} + \sum_{e_{i,j} \in E, |\Gamma_i| < |\Gamma_j|, i \in \Gamma_x, j \in \Gamma_y} \left(\frac{1}{|\Gamma_i|} - \frac{1}{|\Gamma_j|}\right) + \beta \sum_{[x,p,q,y] \in paths_{x,y}^3} \frac{1}{|\Gamma_p| |\Gamma_q|}$$

FL [Friend Link], similar a LPI

$$s(x,y) = \sum_{i=2}^{l} \frac{1}{i-1} \frac{(A^i)_{x,y}}{\prod_{j=2}^{i} (|V|-j)}$$

■ **PFP** [PropFlow Predictor], similar a RWR

Métodos cuasi-locales PFP [PropFlow Predictor]

```
Input: Network G = (V, E), node x and max path length l.
Output: Score S_{x,y} for all n \leq l-degree neighbors of y from x.
Found = \{x\};
NewSearch = \{x\};
S_{x,x} = 1;
for each z in V - \{x\} do
    S_{x,z}=0;
end
for CurrentDegree from 0 to 1 do
    OldSearch = NewSearch;
    NewSearch = \emptyset:
    for each i in OldSearch do
        for each j in \Gamma_i do
            S_{x,j} \leftarrow S_{x,j} + \frac{S_{x,i}}{|\Gamma_i|};
            if j is not in Found then
                Found = Found \cup \{j\};
                NewSearch = NewSearch \cup \{j\};
            end
        end
    end
end
```


Métodos basados en similitud

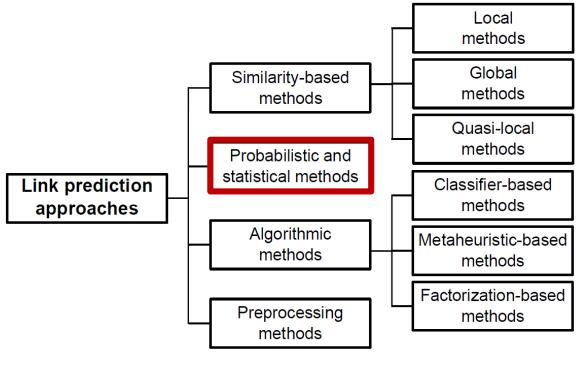
Tabla resumen

CNI	0(13)	[T '] N 11 1 TZ1 ' 1 000771
CN	$O(vk^3)$	[Liben-Nowell and Kleinberg 2007]
AA	$O(vk^3)$	[Adamic and Adar 2003]
RA	$O(vk^3)$	[Zhou et al. 2009]
RA-CNI	$O(vk^4)$	[Zhang et al. 2014]
PA	$O(vk^2)$	[Barabási and Albert 1999]
JA	$O(vk^3)$	[Jaccard 1901]
SA	$O(vk^3)$	[Salton and McGill 1983]
SO	$O(vk^3)$	[Sørensen 1948]
HPI	$O(vk^3)$	[Ravasz et al. 2002]
HDI	$O(vk^3)$	[Ravasz et al. 2002]
LLHN	$O(vk^3)$	[Leicht et al. 2006]
IA1	$O(vk^4)$	[Dong et al. 2011]
IA2	$O(vk^3)$	[Dong et al. 2011]
MI	$O(nk^6)$	[Tan et al. 2014]
LNB	$O(O(f(z)) + vk^3)$	[Liu et al. 2011]
CAR	$O(vk^4)$	[Cannistraci et al. 2013]
	RA RA-CNI PA JA SA SO HPI HDI LLHN IA1 IA2 MI LNB	$\begin{array}{c cccc} AA & O(vk^3) \\ \hline RA & O(vk^3) \\ \hline RA-CNI & O(vk^4) \\ \hline PA & O(vk^2) \\ \hline JA & O(vk^3) \\ \hline SA & O(vk^3) \\ \hline SO & O(vk^3) \\ \hline HPI & O(vk^3) \\ \hline HDI & O(vk^3) \\ \hline LLHN & O(vk^3) \\ \hline IA1 & O(vk^4) \\ \hline IA2 & O(vk^3) \\ \hline MI & O(nk^6) \\ \hline LNB & O(O(f(z)) + vk^3) \\ \hline \end{array}$

Tabla resumen

	NSP	$O(ev \log v)$	[Liben-Nowell 2005]
	KI	$O(v^3)$	[Katz 1953]
	GLHN	$O(cv^2k)$	[Leicht et al. 2006]
	RW	$O(cv^2k)$	[Pearson 1905]
	RWR	$O(cv^2k)$	[Tong et al. 2006]
Global	FP	$O(cv^2k)$	[Vanunu and Sharan 2008]
Global	MERW	$O(cv^2k)$	[Li et al. 2011]
	SR	$O(v^2k^{2l+2})$	[Jeh and Widom 2002]
	PLM	$O(v^3)$	[Fouss et al. 2007]
	ACT	$O(v^3)$	[Fouss et al. 2007]
	RFK	$O(v^3)$	[Chebotarev and Shamis 2006]
	BI	$O(cv^2k)$	[Blondel et al. 2004]
	LPI	$O(lv^2k)$	[Lü et al. 2009]
	LRW	$O(lv^2k)$	[Liu and Lü 2010]
Quasi	SRW	$O(lv^2k)$	[Liu and Lü 2010]
local	ORA-CNI	$O(vk^6)$	[Zhang et al. 2014]
	FL	$O(lv^2k)$	[Papadimitriou et al. 2012]
	PFP	$O(vlk^l)$	[Lichtenwalter et al. 2010]

Métodos probabilísticos



Métodos probabilísticos

Hipótesis

La formación de la red se produce de acuerdo a algún modelo formal (de tipo estadístico).

Idea básica

Asumiendo que la red se ajusta a un modelo concreto, se estiman los parámetros de dicho modelo y se calcula la probabilidad de formación de cada posible enlace...

Métodos probabilísticos

Hierarchical structure model

Red organizada jerárquicamente

$$\mathcal{L}(D, \{p_n\}) = \prod p_n^{e_n} (1 - p_n)^{l_n r_n - e_n}$$

Input: Network G = (V, E), number n of dendrograms to sample. **Output**: Probability $P_{x,y}$ for all unconnected pairs of nodes. $Samples = \emptyset;$ for i from 1 to n do Initialize the Markov chain with a random dendrogram; Run Monte Carlo algorithm until equilibrium is reached; Insert resulting dendrogram D into Samples; end for each $e_{x,y}$ in $U_G - E$ do $avg_prob = 0;$ for each sample in Samples do $n \leftarrow \text{lower common ancestor of } x \text{ and } y \text{ in } sample;$

 $avg_prob \leftarrow avg_prob + \frac{\overline{p}_n}{|Samples|}$;

end

 $P_{x,y} = avg_prob;$

end

Métodos probabilísticos

Stochastic block model

Red organizada en torno a comunidades...

$$\mathcal{L}(G|\mathcal{M}) = \prod_{a \le b; a, b \in \mathcal{M}} p_{a,b}^{l_{a,b}} (1 - p_{a,b})^{r_{a,b} - l_{a,b}}$$

$$P_{x,y} = \frac{\sum_{\mathcal{M} \in \omega} \mathcal{L}(e_{x,y} \in E|\mathcal{M}) \mathcal{L}(G|\mathcal{M}) p(\mathcal{M})}{\sum_{\mathcal{M}' \in \omega} \mathcal{L}(G|\mathcal{M}') p(\mathcal{M}')}$$

Métodos probabilísticos

Cycle formation model

Red con tendencia a cerrar ciclos...

"Los amigos de mis amigos son mis amigos"

$$p_{x,y}(c_1,...,c_k) = \frac{c_1 \prod_{i=2}^k c_i^{|paths_{x,y}^i|}}{c_1 \prod_{i=2}^k c_i^{|paths_{x,y}^i|} + (1-c_1) \prod_{i=2}^k (1-c_i)^{|paths_{x,y}^i|}}$$

Input: Network G = (V, E), model degree k.

Output: Probability $P_{x,y}$ for all unconnected pairs of nodes.

Compute Generalized Clustering Coefficients C(2),...,C(k); $c_1 = \text{Connecting probability in random graph with same degree distribution that } G$; $c_2 = \frac{(1-c_1)C(2)}{c_1-2c_1C(2)+C(2)}$;
for i from 3 to k do $c_i \leftarrow 0.5$;
end
for i from 3 to k do $c_i \leftarrow \arg\min_{c_i} |C(i) - f(c_1,...,c_k)|$;
end
for each $e_{x,y}$ in $U_G - E$ do $P_{x,y} \leftarrow p_{x,y}(c_1,...,c_k)$;

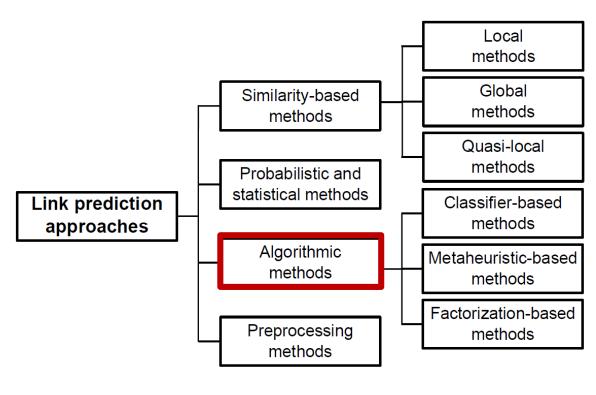
Métodos probabilísticos

Local co-occurrence model

Basado en propiedades topológicas locales ("escalable")

```
Input: Network G = (V, E), central neighborhood set max size t, max path length k.
Output: Probability P_{x,y} for all unconnected pairs of nodes. for each \ e_x, in \ U - E do
    C_{x,y} = \emptyset;
    for l from 2 to k do
        p_i \leftarrow \text{Compute and sort by length and frequency } paths_{x,y}^l;
        for each p in p_i do
            if |C_{x,y}| < t then
                 Insert all nodes in p into C_{x,y};
        end
    NDI = Compute non-derivable itemsets from C_{x,y};
    for each ndi in NDI do
        if ndi in C_{x,y} then
Insert ndi into R_{x,y};
    end
    M = Initialize Markov Random Fields using C_{x,y} and R_{x,y};
    while not M satisfies all constrains in R_{x,y} do
        for each r in R_{x,y} do
            Update M to force satisfying r;
    P_{x,y} = Infer probability of e_{x,y} from M;
end
```


Métodos algorítmicos



Métodos algorítmicos

Métodos basados en clasificadores

Consideran la predicción de enlaces como un problema clásico de aprendizaje supervisado (no balanceado).

- Árboles de decisión
- k-NN (vecinos más cercanos)
- SVMs [Support Vector Machines]
- Redes neuronales: perceptrones multicapa, RBFs...
- Naive Bayes
- Ensembles, p.ej. random forests

Métodos algorítmicos

Métodos basados en metaheurísticas

Algoritmos evolutivos (permiten modelar la coexistencia de varios mecanismos de formación de enlaces).

p.ej.
CMA-ES [Covariance Matrix Adaptation Evolution Strategy]

Métodos algorítmicos

Factorización de matrices

Muy utilizada en sistemas de recomendación

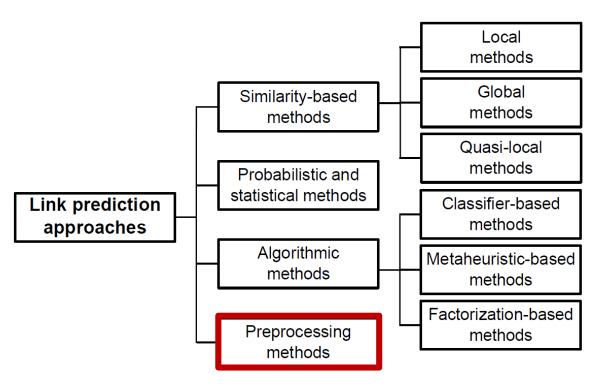
$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}$$

Orthogonal matrix

SVD [Singular Value Decomposition]

p.ej.

Técnicas de preprocesamiento



Técnicas de preprocesamiento

Utillizadas en combinación con otros métodos, pretenden reducir el ruido presente en las redes en forma de enlaces falsos o "débiles".

- Low-rank approximation (SVD)
 - ~ Extracción de características
- Unseen bigrams
 (se reemplaza un nodo por sus nodos más similares)
- Filtering
 (eliminación de los enlaces más débiles, determinados
 con la ayuda de una método de predicción de enlaces

Agradecimientos

Víctor Martínez

Supervised Data Mining in Networks: Methods and Applications

PhD Thesis, 2018

Department of Computer Science and Artificial Intelligence University of Granada (Spain)

Víctor Martínez, Fernando Berzal & Juan-Carlos Cubero: **A survey of link prediction in complex networks**. ACM Computing Surveys 49(4):69:1-69:33, 2017. Víctor Martínez, Fernando Berzal & Juan-Carlos Cubero: **Adaptive degree penalization for link prediction**.

Journal of Computational Science, 13:1-9, March 2016

NOESIS

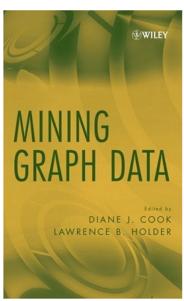
Network-Oriented Exploration, Simulation, and Induction System https://noesis.ikor.org

Víctor Martínez, Fernando Berzal & Juan-Carlos Cubero: **NOESIS: A Framework for Complex Network Data Analysis** Complexity, 2019. https://doi.org/10.1155/2019/1439415

Bibliografía

Diane J. Cooke & Lawrence B. Holder (editors): Mining Graph Data.

Wiley, 2007. ISBN 0-471-73190-0



Chapter 5 **Discovery of frequent substructures**Xifeng Yang & Jiawei Han

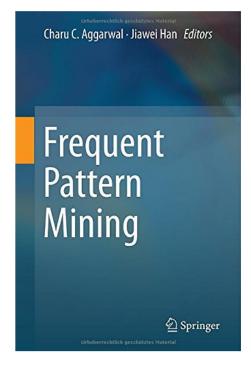
Bibliografía

Charu C. Aggarwal & Jiawei Han (editors):

Frequent Pattern Mining. Springer, 2014.

ISBN 3319078208.

Chapter 13 **Mining Graph Patterns**Hong Chen, Xifeng Yang & Jiawei Han

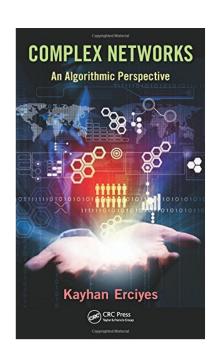


Bibliografía

Kayhan Erciyes:
 Complex Networks:
 An Algorithmic Perspective.
 CRC Press, 2014.
 ISBN 1466571667.

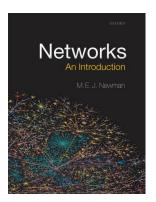
Chapter 9 **Network Motif Discovery**

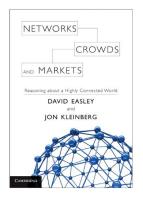
Chapter 10 **Protein Interaction Networks**10.4 Network Motifs in PPI Networks

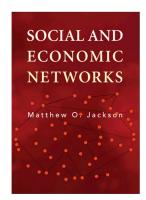


Bibliografía

- David Easley & Jon Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. ISBN 0521195330 http://www.cs.cornell.edu/home/kleinber/networks-book/
- Mark Newman: Networks: An Introduction. Oxford University Press, 2010. ISBN 0-19-920665-1
- Matthew O. Jackson: Social and Economic Networks, Princeton University Press, 2008. ISBN 0-691-13440-5

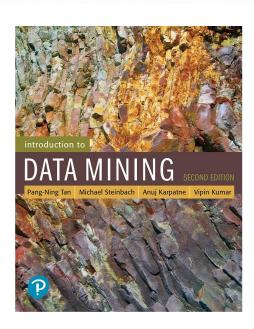






Bibliografía

Pang-Ning Tan,
Michael Steinbach,
Vipin Kumar &
Anuj Karpatne:
Introduction to Data Mining,
2nd edition, Addison Wesley, 2018.
ISBN 0133128903



Bibliografía

Jiawei Han,
Jian Pei &
Hanghang Tong: **Data Mining: Concepts and Techniques**,
4th edition, Morgan Kaufmann, 2022.
ISBN 0128117605

